2
Views
18
CrossRef citations to date
0
Altmetric
Gene Expression

trans-Dominant Mutants of E1A Provide Genetic Evidence that the Zinc Finger of the trans-Activating Domain Binds a Transcription Factor

&
Pages 4287-4296 | Received 21 Mar 1991, Accepted 04 Jun 1991, Published online: 31 Mar 2023

References

  • Abmayr, S. M., J. L. Workman, and R. G. Roeder. 1988. The pseudorabies immediate early protein stimulates in vitro transcription by facilitating TFIID: promoter interactions. Genes Dev. 2:542–553.
  • Bagchi, S., P. Raychaudhuri, and J. R. Nevins. 1989. Phosphorylation-dependent activation of the adenovirus-inducible E2f transcription factor in a cell-free system. Proc. Natl. Acad. Sci. USA 86:4352–4356.
  • Berk, A. J. 1986. Adenovirus promoters and E1A trans-activation. Annu. Rev. Genet. 20:45–79.
  • Bowie, J. U., J. F. Reidhaar-Olson, W. A. Lim, and R. T. Sauer. 1990. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science 247:1306–1310.
  • Chatterjee, P. K., M. Bruner, S. J. Flint, and M. L. Harter. 1988. The DNA-binding properties of an adenovirus 289R E1A protein. EMBO J. 7:835–841.
  • Courey, A. J., and R. Tjian. 1988. Analysis of Spl in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898.
  • Culp, J. S., L. C. Webster, D. J. Friedman, C. L. Smith, W.-J. Huang, F. Y.-H. Wu, M. Rosenberg, and R. P. Ricciardi. 1988. The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for trans-activation. Proc. Natl. Acad. Sci. USA 85:6450–6454.
  • Del Sal, G., G. Manfioletti, and C. Schneider. 1989. The CTABDNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. BioTechniques 7:514–518.
  • Evans, R. M., and S. M. Hollenberg. 1988. Zinc fingers: gilt by association. Cell 52:1–3.
  • Ferguson, B., B. Krippl, O. Andrisani, N. Jones, H. Westphal, and M. Rosenberg. 1985. E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol. Cell. Biol. 5:2653–2661.
  • Freedman, L. P., B. F. Luisi, Z. R. Korszun, R. Basavappa, P. B. Sigler, and K. R. Yamamoto. 1988. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA-binding domain. Nature (London) 334:543–546.
  • Glenn, G. M., and R. P. Ricciardi. 1985. Adenovirus 5 early region 1A host range mutants hr3, hr4, and hr5 contain point mutations which generate single amino acid substitutions. J. Virol. 56:66–74.
  • Glenn, G. M., and R. P. Ricciardi. 1987. An adenovirus type 5 E1A protein with a single amino acid substitution blocks wildtype E1A trans-activation. Mol. Cell. Biol. 7:1004–1011.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Graham, F., and A. van der Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–457.
  • Hanas, J. S., D. J. Hazuda, D. F. Bogenhagen, F. Y.-H. Wu, and C.-W. Wu. 1983. Xenopus transcription factor A requires zinc for binding to the 5S RNA gene. J. Biol. Chem. 258:14120–14124.
  • Hope, I. A., and K. Struhl. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894.
  • Horikoshi, M., M. F. Carey, H. Kakidani, and R. G. Roeder. 1988. Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell 54:665–669.
  • Horikoshi, M., T. Hai, Y.-S. Lin, M. R. Green, and R. G. Roeder. 1988. Transcription factor ATF interacts with the TATA factor to facilitate establishment of preinitiation complexes. Cell 54:1033–1042.
  • Jones, N. C., J. D. Richter, D. L. Weeks, and L. D. Smith. 1983. Regulation of adenovirus transcription by an E1A gene in microinjected Xenopus laevis oocytes. Mol. Cell. Biol. 3:2131–2142.
  • Kadonaga, J. T., K. R. Carner, F. R. Masierz, and R. Tjian. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA-binding domain. Cell 51:1079–1090.
  • Kim, K. S., and L. Guarente. 1989. Mutations that alter transcriptional activation but not DNA binding in the zinc finger of yeast activator HAP1. Nature (London) 342:200–203.
  • Kimelman, D., J. S. Miller, D. Porter, and B. E. Roberts. 1985. E1A regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J. Virol. 53:399–409.
  • Kingston, R. E., A. S. Baldwin, and P. A. Sharp. 1985. Transcription control by oncogenes. Cell 41:3–5.
  • Klug, A., and D. Rhodes. 1987. "Zinc finger": a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 12:464–469.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zekour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Leong, K., L. Brunet, and A. J. Berk. 1988. Factors responsible for the higher transcriptional activity of extracts of adenovirus- infected cells fractionate with the TATA box transcription factor. Mol. Cell. Biol. 8:1765–1774.
  • Lewin, B. 1990. Commitment and activation at Pol II promoters: a tail of protein-protein interactions. Cell 61:1161–1164.
  • Lillie, J. W., and M. R. Green. 1989. Transcription activation by the adenovirus E1A protein. Nature (London) 338:39–44.
  • Lillie, J. W., M. Green, and M. R. Green. 1986. An adenovirus E1A protein region required for transformation and transcriptional repression. Cell 46:1043–1051.
  • Lillie, J. W., P. M. Loewenstein, M. R. Green, and M. Green. 1987. Functional domains of adenovirus type 5 E1A proteins. Cell 50:1091–1100.
  • Liu, F., and M. R. Green. 1990. A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1A protein. Cell 61:1217–1224.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Malim, M. H., S. Bohnlein, J. Hauber, and B. R. Cullen. 1989. Functional dissection of the HIV-1 Rev trans-activator-derivation of a trans-dominant repressor of Rev function. Cell 58:205–214.
  • Martin, K. J., J. W. Lillie, and M. R. Green. 1990. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature (London) 346:147–152.
  • Merino, A., L. Buckbinder, F. H. Mermelstein, and D. Reinberg. 1989. Phosphorylation of cellular proteins regulates their binding to the cAMP response element. J. Biol. Chem. 264:21266–21276.
  • Mermer, B., B. K. Felber, M. Campbell, and G. N. Pavlakis. 1990. Identification of trans-dominant HIV-1 rev protein mutants by direct transfer of bacterially produced proteins into human cells. Nucleic Acids Res. 18:2037–2044.
  • Mermod, N., E. A. O'Neill, T. J. Kelly, and R. Tjian. 1989. The proline-rich transcriptional activators of CTF/NF-1 is distinct from the replication and DNA-binding domain. Cell 58:741–753.
  • Miller, J., A. D. McLachlan, and A. Klug. 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609–1614.
  • Montell, C., E. F. Fisher, M. H. Caruthers, and A. J. Berk. 1982. Resolving the functions of overlapping viral genes by sitespecific mutagenesis at a mRNA splice site. Nature (London) 295:380–384.
  • Moran, E., and M. B. Mathews. 1987. Multiple functional domains in the adenovirus E1A gene. Cell 48:177–178.
  • Moran, E., B. Zerler, T. M. Harrison, and M. B. Mathews. 1986. Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol., Cell. Biol. 6:3470–3480.
  • Pearson, L., J. Garcia, F. Wu, N. Modesti, J. Nelson, and R. Gaynor. 1990. A trans-dominant tat mutant that inhibits tat- induced gene expression from the human immunodeficiency virus long terminal repeat. Proc. Natl. Acad. Sci. USA 87:5079–5083.
  • Pei, R., and A. J. Berk. 1989. Multiple transcription factor binding sites mediate adenovirus E1A transactivation. J. Virol. 63:3499–3506.
  • Ptashne, M. 1988. How eukaryotic transcriptional activators work. Nature (London) 335:683–689.
  • Ptashne, M., and A. A. F. Gann. 1990. Activators and targets. Nature (London) 346:329–331.
  • Raychaudhuri, P., S. Bagchi, and J. R. Nevins. 1989. DNA- binding activity of the adenovirus-induced E4F transcription factor is regulated by phosphorylation. Genes Dev. 3:620–627.
  • Raychaudhuri, P., R. Rooney, and J. R. Nevins. 1987. Identification of an E1A-inducible cellular factor that interacts with regulatory sequences within the adenovirus E4 promoter. EMBO J. 6:4073–4081.
  • Ricciardi, R. P., R. L. Jones, C. L. Cepko, P. A. Sharp, and B. E. Roberts. 1981. Expression of early adenovirus genes requires a viral encoded acidic polypeptide. Proc. Natl. Acad. Sci. USA 78:6121–6125.
  • Richter, J. D., J. M. Slavicek, J. F. Schneider, and N. C. Jones. 1988. Heterogeneity of adenovirus type 5 E1A proteins: multiple serine phosphorylations induce slow-migrating electrophoresis variants but do not affect E1A-induced transcriptional activation or transformation. J. Virol. 62:1948–1955.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schena, M., L. P. Freedman, and K. R. Yamamoto. 1989. Mutations in the glucocorticoid receptor zinc finger region that distinguish interdigitated DNA binding and transcriptional enhancement activities. Genes Dev. 3:1590–1601.
  • Simon, M. C., T. M. Fisch, B. J. Benecke, J. R. Nevins, and N. Heintz. 1988. Definition of multiple, functionally distinct TATA elements, one of which is a target in the hsp70 promoter for E1A regulation. Cell 52:723–729.
  • Stringer, K. F., J. C. Ingles, and J. Greenblatt. 1990. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature (London) 345:783–786.
  • Taylor, I. C. A., and R. E. Kingston. 1990. E1A transactivation of human HSP70 gene promoter substitution mutants is independent of the composition of upstream and TATA elements. Mol. Cell. Biol. 10:176–183.
  • Tremblay, M. L., D. J. Dumont, and P. E. Branton. 1989. Analysis of phosphorylation sites in the exon 1 region of E1A proteins of human adenovirus type 5. Virology 169:397–407.
  • Triezenberg, S. J., R. C. Kingsbury, and S. L. McKnight. 1988. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev. 2:718–729.
  • Wachsman, W., A. J. Cann, J. L. Williams, D. J. Slamon, L. Souza, N. F. Shah, and I. S. Y. Chen. 1987. HTLV X gene mutants exhibit novel transcriptional regulatory phenotypes. Science 235:674–677.
  • Webster, L. C., K. Zhang, B. Chance, I. Ayene, J. S. Culp, W.-J. Huang, F. Y.-H. Wu, and R. P. Ricciardi. Unpublished data.
  • Weeks, D. L., and N. C. Jones. 1983. E1A control of gene expression is mediated by sequences 5′ to the transcriptional starts of the early viral genes. Mol. Cell. Biol. 3:1222–1234.
  • Whyte, P., N. M. Williamson, and E. Harlow. 1989. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75.
  • Williams, G. T., T. K. McClanahan, and R. I. Morimoto. 1989. E1A trans-activation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol. Cell. Biol. 9:2574–2587.
  • Winberg, G., and T. Shenk. 1984. Dissection of overlapping functions within the adenovirus type 5 E1A gene. EMBO J. 3:1907–1912.
  • Wu, L., D. S. E. Rosser, M. C. Schmidt, and A. Berk. 1987. A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature (London) 326:512–515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.