4
Views
5
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Synapsis, Strand Scission, and Strand Exchange Induced by the FLP Recombinase: Analysis with Half-FRT Sites

, , &
Pages 4497-4508 | Received 15 Jan 1991, Accepted 13 Jun 1991, Published online: 31 Mar 2023

References

  • Amin, A. A., L. G. Beatty, and P. D. Sadowski. 1990. Synaptic intermediates promoted by the FLP recombinase. J. Mol. Biol. 214:55–72.
  • Andrews, B. J., L. G. Beatty, and P. D. Sadowski. 1987. Isolation of intermediates in the binding of the FLP recombinase of the yeast plasmid 2 micron circle to its target sequence. J. Mol. Biol. 193:345–358.
  • Andrews, B. J., M. McLeod, J. Broach, and P. D. Sadowski. 1986. Interaction of the FLP recombinase of the Saccharomyces cerevisiae 2 μm plasmid with mutated target sequences. Mol. Cell. Biol. 7:2482–2489.
  • Andrews, B. J., G. A. Protean, L. G. Beatty, and P. D. Sadowski. 1985. The FLP recombinase of the 2μ circle DNA of yeast: interaction with its target sequences. Cell 40:795–803.
  • Beatty, L. G., and P. D. Sadowski. 1988. The mechanism of loading of the FLP recombinase onto its target sequence. J. Mol. Biol. 204:283–294.
  • Broach, J. R., V. R. Guarascio, and M. Jayaram. 1982. Recombination within the yeast 2 micron circle is site-specific. Cell 29:227–234.
  • Bruckner, R. C., and M. M. Cox. 1986. Specific contacts between the FLP protein of the yeast 2 micron plasmid and its recombination site. J. Biol. Chem. 261:11798–11807.
  • Cox, M. M. 1989. DNA inversion in the 2μm plasmid of Saccharomyces cerevisiae, p. 661–670. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Craig, N. L. 1988. The mechanism of conservative site-specific recombination. Annu. Rev. Genet. 22:77–105.
  • Droge, P., and N. R. Cozzarelli. 1989. Recombination of knotted substrates by Tn3 resolvase. Proc. Natl. Acad. Sci. USA 86:6062–6066.
  • Droge, P., G. F. Hatfull, N. D. F. Grindley, and N. R. Cozzarelli. 1990. The two functional domains of γδ resolvase act on the same recombination site: implications of the mechanism of strand exchange. Proc. Natl. Acad. Sci. USA 87:5336–5340.
  • Friesen, H., and P. Sadowski. Unpublished data.
  • Gronostajski, R. M., and P. D. Sadowski. 1985. The FLP recombinase of the Saccharomyces cerevisiae 2μ plasmid attaches covalently to DNA via a phosphotyrosyl linkage. Mol. Cell. Biol. 5:3274–3279.
  • Hoess, R., A. Wierzbicki, and K. Abremski. 1987. Isolation and characterization of intermediates in site-specific recombination. Proc. Natl. Acad. Sci. USA 84:6840–6844.
  • Jayaram, M. 1985. Two-micrometer circle site-specific recombination: the minimal substrate and possible role of flanking sequences. Proc. Natl. Acad. Sci. USA 82:5875–5879.
  • Jayaram, M., K. L. Crain, R. L. Parsons, and R. M. Harshey. 1988. Holliday junctions in FLP recombination: resolution by step-arrest mutants of FLP protein. Proc. Natl. Acad. Sci. USA 85:7902–7906.
  • Kitts, P. A., and H. A. Nash. 1987. Homology-dependent interactions in phage λ site-specific recombination. Nature (London) 329:346–348.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Landy, A. 1989. Dynamic, structural and regulatory aspects of λsite-specific recombination. Annu. Rev. Biochem. 58:913–949.
  • Leong, J. M., S. E. Nunes-Duby, and A. Landy. 1985. Generation of single base-pair deletions, insertions and substitutions by a site-specific recombination system. Proc. Natl. Acad. Sci. USA 82:6990–6994.
  • Luetke, K. Unpublished data.
  • Murray, J. H., G. Cesareni, and P. Argos. 1988. Unexpected divergence and molecular coevolution in yeast plasmids. J. Mol. Biol. 200:601–607.
  • Myer-Leon, L., R. B. Inman, and M. M. Cox. 1990. Characterization of Holliday structures in FLP protein-promoted sitespecific recombination. Mol. Cell. Biol. 10:235–242.
  • Nunes-Duby, S. E., L. Matsumoto, and A. Landy. 1987. Sitespecific recombination intermediates trapped with suicide substrates. Cell 50:779–788.
  • Nunes-Duby, S. E., L. Matsumoto, and A. Landy. 1989. Half-att site substrates reveal the homology independence and minimal protein requirements for productive synapsis in λ excisive recombination. Cell 59:197–206.
  • Pan, H., D. Clary, and P. D. Sadowski. 1991. Identification of the DNA-binding domain of the FLP recombinase. J. Biol. Chem. 266:11347–11354.
  • Proteau, G., D. Sidenberg, and P. D. Sadowski. 1986. The minimal duplex DNA sequence required for site-specific recombination promoted by the FLP protein of yeast in vitro. Nucleic Acids Res. 14:4787–1802.
  • Qian, X.-H., R. B. Inman, and M. M. Cox. 1990. Protein-based asymmetry and protein-protein interactions in FLP recombinase mediated site-specific recombination. J. Biol. Chem. 265:21779–21788.
  • Sadowski, P. 1986. Site-specific recombinases: changing partners and doing the twist. J. Bacteriol. 165:341–347.
  • Schwartz, C. J. E., and P. D. Sadowski. 1989. FLP recombinase of the 2 μm circle plasmid of Saccharomyces cerevisiae bends its DNA target. Isolation of FLP mutants defective in DNA bending. J. Mol. Biol. 205:647–658.
  • Schwartz, C. J. E., and P. D. Sadowski. 1990. The FLP protein of the 2-micron circle plasmid of yeast induces multiple bends in the FLP recognition target site. J. Mol. Biol. 216:289–298.
  • Vetter, D., B. J. Andrews, L. Roberts Beatty, and P. D. Sadowski. 1983. Site-specific recombination of yeast 2 micron DNA in vitro. Proc. Natl. Acad. Sci. USA 80:7284–7288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.