0
Views
11
CrossRef citations to date
0
Altmetric
Gene Expression

Differential Ability of Proximal and Remote Element Pairs To Cooperate in Activating RNA Polymerase II Transcription

&
Pages 4561-4571 | Received 04 Mar 1991, Accepted 24 Jun 1991, Published online: 31 Mar 2023

References

  • Angel, P., M. Imagawa, R. Chiu, B. Stein, R. J. Imbra, J. H. Rahmsdorf, C. Jonat, P. Herrlich, and M. Karin. 1987. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49:729–739.
  • Auffray, C., and F. Rougeon. 1980. Purification of mouse immunoglobulin heavy chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107:303–314.
  • Becker, P. B., B. Gloss, W. Schmid, U. Strahle, and G. Schutz. 1986. In vivo protein-DNA interactions in a glucocorticoid response element require the presence of the hormone. Nature (London) 324:686–688.
  • Berger, S. L., W. D. Cress, A. Cress, S. J. Triezenberg, and L. Guarente. 1990. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 51:1199–1208.
  • Bucher, P., and E. N. Trifonov. 1986. Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res. 14:10008–10026.
  • Carey, M., Y.-S. Lin, M. R. Green, and M. Ptashne. 1990. A potent GAL4 derivative activates transcription at a distance in vitro. Science 247:710–712.
  • Chodosh, L. A., A. S. Baldwin, R. W. Carthew, and P. A. Sharp. 1988. Human CCAAT-binding proteins have heterologous subunits. Cell 53:11–24.
  • Courey, A. J., D. A. Holtzman, S. P. Jackson, and R. Tjian. 1989. Synergistic activation by the glutamine-rich domains of human transcription factor SP1. Cell 59:827–836.
  • Courey, A. J., and R. Tjian. 1988. Analysis of SP1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898.
  • Dierks, P., A. van Ooyen, M. D. Cochran, C. Dobkin, J. Reiser, and C. Weissmann. 1983. Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit beta-globin gene in mouse 3T6 cells. Cell 32:695–706.
  • Dynan, W. 1989. Modularity in promoters and enhancers. Cell 58:1–4.
  • Efstratiadis, A., J. W. Posakony, T. Maniatis, R. M. Lawn, C. O'Connell, R. A. Spritz, J. K. Deriel, B. G. Forget, S. M. Weissman, J. L. Slightom, A. E. Blechl, O. Smithies, F. E. Baralle, C. C. Schoulders, and N. J. Proudfoot. 1980. The structure and evolution of the human beta-globin gene family. Cell 21:653–668.
  • Garcia, J., F. Wu, and R. Gaynor. 1987. Upstream regulatory regions required to stabilize binding to the TATA sequence in an adenovirus early promoter. Nucleic Acids Res. 15:8367–8384.
  • Hurst, H. C., and N. C. Jones. 1987. Identification of factors that interact with the E1A-inducible adenovirus E3 promoter. Genes Dev. 1:1132–1146.
  • Imagawa, M., R. Chiu, and M. Karin. 1987. Transcription factor AP2 mediate induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell 51:251–260.
  • Jones, K. A., J. T. Kadonaga, P. J. Rosenfeld, T. J. Kelly, and R. Tjian. 1987. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48:79–89.
  • Jones, N. C., P. W. J. Rigby, and E. G. Ziff. 1988. Trans-acting protein factors and the regulation of eukaryotic transcription: lessons from studies on DNA tumor viruses. Genes Dev. 2:267–281.
  • Kadonaga, J. T., K. A. Jones, and R. Tjian. 1986. Promoterspecific activation of RNA polymerase II transcription by Spl. Trends Biochem. Sci. 11:20–23.
  • Kakidani, H., and M. Ptashne. 1988. GAL4 activates gene expression in mammalian cells. Cell 52:161–167.
  • Kelleher, R. J., P. M. Flanagan, and R. D. Kornberg. 1990. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61:1209–1215.
  • Lee, W., P. Mitchell, and R. Tjian. 1987. Purified transcription factor SP-1 interacts with TPA-inducible enhancer elements. Cell 49:741–752.
  • Lin, Y.-S., M. F. Carey, M. Ptashne, and M. R. Green. 1988. GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Cell 54:659–664.
  • McKnight, S. L. 1982. Functional relationships between transcriptional control signals of the thymidine kinase gene of herpes simplex virus. Cell 31:355–365.
  • Miksicek, R., U. Borgmeyer, and J. Nowock. 1987. Interaction of the TGGCA-binding protein with upstream sequences is required for efficient transcription of mouse mammary tumor virus. EMBO J. 6:1355–1360.
  • Mitchell, P. J., and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378.
  • Mitchell, P. J., C. Wang, and R. Tjian. 1987. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell 50:847–861.
  • Morgan, J. G., G. Courtois, G. Fourel, L. A. Chodosh, L. Campbell, E. Evans, and G. R. Crabtree. 1988. Spl, a CAAT- binding factor, and the adenovirus major late promoter transcription factor interact with functional regions of the gammafibrinogen promoter. Mol. Cell. Biol. 8:2628–2637.
  • Ptashne, M. 1988. How eukaryotic transcriptional activators work. Nature (London) 335:683–689.
  • Pugh, B. F., and R. Tjian. 1990. Mechanism of transcriptional activation by SP1: evidence for coactivators. Cell 61:1187–1197.
  • Sadowski, I., J. Ma, S. Triezenberg, and M. Ptashne. 1988. Gal4-VP16 is an unusually potent transcriptional activator. Nature (London) 335:563–564.
  • Schüle, R., M. Müller, C. Kaltschmidt, and R. Renkawitz. 1988. Many transcription factors interact synergistically with steroid receptors. Science 242:1418–1420.
  • Schüle, R., M. Müller, H. Otsuka-Murakami, and R. Renkawitz. 1988. Cooperative of the glucocorticoid receptor and the CACCC-box binding factor. Nature (London) 332:87–90.
  • Spaete, R. R., and E. S. Mocarski. 1985. Regulation of cytomegalovirus gene expression: a and β promoters are trans-activated by viral functions in permissive human fibroblasts. J. Virol. 56:135–143.
  • Strähle, U., M. Boshart, G. Klock, F. Stewart, and G. Schütz. 1989. Glucocorticoid- and progesterone-specific effects are determined by differential expression of the respective hormone receptors. Nature (London) 339:629–632.
  • Strähle, U., W. Schmid, and G. Schütz. 1988. Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J. 7:3389–3395.
  • Tasset, D., L. Tora, C. Fromental, E. Scheer, and P. Chambon. 1990. Distinct classes of transcriptional activating domains function by different mechanisms. Cell 62:1177–1187.
  • Tora, L., J. White, C. Brou, D. Tasset, N. Webster, E. Scheer, and P. Chambon. 1989. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59:477–487.
  • van Huijsduijnen, R. H., X. Y. Li, D. Black, H. Matthes, C. Benoist, and D. Mathis. 1990. Co-evolution from yeast to mouse: cDNA cloning of the two NF-Y CP-l/CBF) subunits. EMBO J. 9:3119–3127.
  • Wang, W., and J. D. Gralla. Submitted for publication.
  • Williams, G. T., T. K. McClanahan, and R. I. Morimoto. 1989. Ela transactivation of the human hsp70 promoter is mediated through the basal transcription complex. Mol. Cell. Biol. 9:2574–2587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.