0
Views
8
CrossRef citations to date
0
Altmetric
Gene Expression

Identification of a Specific Exon Sequence That Is a Major Determinant in the Selection between a Natural and a Cryptic 5′ Splice Site

, , , &
Pages 4581-4590 | Received 04 Mar 1991, Accepted 24 Jun 1991, Published online: 31 Mar 2023

References

  • Adami, G. R., C. W. Marlor, N. L. Barrett, and G. G. Carmichael. 1989. Leader-to-leader splicing is required for efficient production and accumulation of polyomavirus late mRNAs. J. Virol. 63:85–93.
  • Aebi, M., H. Hornig, R. A. Padgett, J. Reiser, and C. Weissmann. 1986. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47:555–565.
  • Baudin, F., C. Ehresmann, P. Romby, M. Mougel, J. Colin, L. Lempereur, J.-P. Bachellerie, J.-P. Ebel, and B. Ehresmann. 1987. Higher-order structure of domain III in Escherichia coli 16S ribosomal RNA, 30S subunit and 70S ribosome. Biochimie 69:1081–1096.
  • Breathnach, R., and P. Chambon. 1981. Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50:349–383.
  • Breitbart, R. E., A. Andreadis, and B. Nadal-Ginard. 1987. Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu. Rev. Biochem. 56:467–495.
  • Chang, D. D., and P. A. Sharp. 1989. Regulation by HIV rev depends upon recognition of splice sites. Cell 59:789–795.
  • Chebli, K., R. Gattoni, P. Schmitt, G. Hildwein, and J. Stevenin. 1989. The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors. Mol. Cell. Biol. 9:4852–4861.
  • Chen, E. Y., and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:1023–1030.
  • Cladaras, C., and W. S. M. Wold. 1985. DNA sequence of the early E3 transcription unit of adenovirus 5. Virology 140:28–43.
  • Cooper, T. A., M. H. Cardone, and C. P. Ordahl. 1988. Cis requirements for alternative splicing of the cardiac troponin T pre-mRNA. Nucleic Acids Res. 16:8443–8465.
  • Cooper, T. A., and C. P. Ordahl. 1989. Nucleotide substitutions within the cardiac troponin T alternative exon disrupt pre- mRNA alternative splicing. Nucleic Acids Res. 17:7905–7921.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Ehresmann, C., F. Baudin, M. Mougel, P. Romby, J.-P. Ebel, and B. Ehresmann. 1987. Probing the structure of RNAs in solution. Nucleic Acids Res. 15:9109–9128.
  • Eperon, L. P., J. P. Estibeiro, and I. C. Eperon. 1986. The role of nucleotide sequences in splice site selection in eukaryotic pre-messenger RNA. Nature (London) 324:280–282.
  • Eperon, L. P., I. R. Graham, A. D. Griffiths, and I. C. Eperon. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393–401.
  • Freier, S. M., R. Kierzek, J. A. Jaeger, N. Sugimoto, M. H. Caruthers, T. Neilson, and D. H. Turner. 1986. Improved free-energy parameters for predictions of RNA duplex stability. Biochemistry 83:9373–9377.
  • Gallego, M. E., and B. Nadal-Ginard. 1990. Myosin light-chain 1/3 gene alternative splicing: cis regulation is based upon a hierarchical compatibility between splice sites. Mol. Cell. Biol. 10:2133–2144.
  • Gallinaro, H., P. Vincendon, A. Sittler, and M. Jacob. 1988. Alternative use of a polyadenylation signal and of a downstream 3′ splice site. Effect of 5,6-dichloro-1-β-D-ribofuranosylbenzim- idazole. J. Mol. Biol. 204:1031–1040.
  • Green, M. R., T. Maniatis, and D. A. Melton. 1983. Human β-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell 32:681–694.
  • Groebe, D. R., and O. C. Uhlenbeck. 1988. Characterization of RNA hairpin loop stability. Nucleic Acids Res. 16:11725–11735.
  • Hampson, R. K., L. La Follette, and F. M. Rottman. 1989. Alternative processing of bovine growth hormone mRNA is influenced by downstream exon sequences. Mol. Cell. Biol. 9:1604–1610.
  • Heaphy, S., C. Dingwall, I. Ernberg, M. J. Gait, S. M. Green, J. Karn, A. D. Lowe, M. Singh, and M. A. Skinner. 1990. HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the rev response element region. Cell 60:685–693.
  • Hérissé, J., G. Courtois, and F. Galibert. 1980. Nucleotide sequence of the EcoRI D fragment of adenovirus 2 genome. Nucleic Acids Res. 8:2173–2192.
  • Hodges, P. E., and L. E. Rosenberg. 1989. The spfash mouse: a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing. Proc. Natl. Acad. Sci. USA 86:4142–4146.
  • Inouye, S., and M. Inouye. 1987. Oligonucleotide-directed sitespecific mutagenesis using double-stranded plasmid DNA, p. 181–206. In S. A. Narang (ed.), Synthesis and applications of DNA and RNA. Academic Press, Inc., Orlando, Fla.
  • Jacob, M., and H. Gallinaro. 1989. The 5′ splice site: phylogenetic evolution and variable geometry of association with U1RNA. Nucleic Acids Res. 17:2159–2180.
  • Kakizuka, A., T. Ingi, T. Murai, and S. Nakanishi. 1990. A set of U1 snRNA-complementary sequences involved in governing alternative RNA splicing of the kininogen genes. J. Biol. Chem. 265:10102–10108.
  • Kramer, A. R., T. Maniatis, B. Ruskin, and M. R. Green. 1984. Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36:993–1005.
  • Lapoumeroulie, C., S. Acuto, F. Rouabhi, D. Labie, R. Krishnamoorthy, and A. Bank. 1987. Expression of a β thalassemia gene with abnormal splicing. Nucleic Acids Res. 15:8195–8204.
  • Latchman, D. S. 1990. Cell-type-specific splicing factors and the regulation of alternative RNA splicing. New Biologist 2:297–303.
  • Libri, D., M. Goux-Pelletan, E. Brody, and M. Y. Fiszman. 1990. Exon as well as intron sequences are cis-regulating elements for the mutually exclusive alternative splicing of the p tropomyosin gene. Mol. Cell. Biol. 10:5036–5046.
  • Malim, M. H., J. Hauber, S.-Y. Le, J. V. Maizel, and B. R. Cullen. 1989. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature (London) 338:254–257.
  • Mardon, H. J., G. Sebastio, and F. E. Baralle. 1987. A role for exon sequences in alternative splicing of the human fibronectin gene. Nucleic Acids Res. 15:7725–7733.
  • Mayeda, A., and Y. Ohshima. 1990. β-Globin transcripts carrying a single intron with three adjacent nucleotides of 5′ exon are efficiently spliced in vitro irrespective of intron position or surrounding exon sequences. Nucleic Acids Res. 18:4671–4676.
  • Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Mount, S. M. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472.
  • Nakajima, H., N. Kono, T. Yamasaki, K. Hotta, M. Kawachi, M. Kuwajima, T. Noguchi, T. Tanaka, and S. Tarui. 1990. Genetic defect in muscle phosphofructokinase deficiency. Abnormal splicing of the muscle phosphofructokinase gene due to a point mutation at the 5′-splice site. J. Biol. Chem. 265:9392–9395.
  • Nasim, F. H., P. A. Spears, H. M. Hoffmann, H.-C. Kuo, and P. J. Grabowski. 1990. A sequential splicing mechanism promotes selection of an optimal exon by repositioning a downstream 5′ splice site in preprotachykinin pre-mRNA. Genes Dev. 4:1172–1184.
  • Nelson, K. K., and M. R. Green. 1990. Mechanism for cryptic splice site activation during pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 87:6253–6257.
  • Olsen, H. S., P. Nelbock, A. W. Cochrane, and C. A. Rosen. 1990. Secondary structure is the major determinant for interaction of HIV rev protein with RNA. Science 247:845–848.
  • Parent, A., S. Zeitlin, and A. Efstratiadis. 1987. Minimal exon sequence requirements for efficient in vitro splicing of mono- intronic nuclear pre-mRNA. J. Biol. Chem. 262:11284–11291.
  • Pavlakis, G. N., and B. K. Felber. 1990. Regulation of expression of human immunodeficiency virus. New Biologist 2:20–31.
  • Reed, R., and T. Maniatis. 1986. A role for exon sequences and splice-site proximity in splice-site selection. Cell 46:681–690.
  • Ris-Stalpers, C., G. G. J. M. Kuiper, P. W. Faber, H. U. Schweikert, H. C. J. Van Rooij, N. D. Zegers, M. B. Hodgins, H. J. Degenhart, J. Trapman, and A. O. Brinkmann. 1990. Aberrant splicing of androgen receptor mRNA results in synthesis of a nonfunctional receptor protein in a patient with androgen insensitivity. Proc. Natl. Acad. Sci. USA 87:7866–7870.
  • Saga, Y., J. S. Lee, C. Saraiya, and E. A. Boyse. 1990. Regulation of alternative splicing in the generation of isoforms of the mouse Ly-5 (CD45) glycoprotein. Proc. Natl. Acad. Sci. USA 87:3728–3732.
  • Schmitt, P., R. Gattoni, P. Keohavong, and J. Stevenin. 1987. Alternative splicing of E1A transcripts of adenovirus requires appropriate ionic conditions in vitro. Cell 50:31–39.
  • Siebel, C. W., and D. C. Rio. 1990. Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression. Science 248:1200–1208.
  • Sittler, A., H. Gallinaro, and M. Jacob. 1986. In vivo splicing of the premRNAs from early region 3 of adenovirus-2: the products of cleavage at the 5′ splice site of the common intron. Nucleic Acids Res. 14:1187–1207.
  • Sittler, A., H. Gallinaro, L. Kister, and M. Jacob. 1987. In vivo degradation pathway of an excised intervening sequence. J. Mol. Biol. 197:737–742.
  • Smith, C. W. J., J. G. Patton, and B. Nadal-Ginard. 1989. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23:527–577.
  • Solnick, D., and S. I. Lee. 1987. Amount of RNA secondary structure required to induce an alternative splice. Mol. Cell. Biol. 7:3194–3198.
  • Somasekhar, M. B., and J. E. Mertz. 1985. Exon mutations that affect the choice of splice sites used in processing the SV40 late transcripts. Nucleic Acids Res. 13:5591–5609.
  • Stalhandske, P., H. Persson, M. Perricaudet, L. Philipson, and U. Petersson. 1983. Structure of three spliced mRNAs from region E3 of adenovirus type 2. Gene 22:157–165.
  • Streuli, M., and H. Saito. 1989. Regulation of tissue-specific alternative splicing exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J. 8:787–796.
  • Tollefson, A. E., P. Krajcsi, S. Yei, C. R. Carlin, and W. S. M. Wold. 1990. A 10,400-molecular-weight membrane protein is coded by region E3 of adenovirus. J. Virol. 64:794–801.
  • Treisman, R., S. H. Orkin, and T. Maniatis. 1983. Specific transcription and RNA splicing defects in five cloned β-thalas- saemia genes. Nature (London) 302:591–596.
  • Tsai, A. Y. M., M. Streuli, and H. Saito. 1989. Integrity of the exon 6 sequence is essential for tissue-specific alternative splicing of human leukocyte common antigen pre-mRNA. Mol. Cell. Biol. 9:4550–4555.
  • Vidaud, M., R. Gattoni, J. Stevenin, D. Vidaud, S. Amselem, J. Chibani, J. Rosa, and M. Goossens. 1989. A 5′ splice-region G→C mutation in exon 1 of the human β-globin gene inhibits pre-mRNA splicing: a mechanism for β+-thalassemia. Proc. Natl. Acad. Sci. USA 86:1041–1045.
  • Watakabe, A., K. Inoue, H. Sakamoto, and Y. Shimura. 1989. A secondary structure at the 3′ splice site affects the in vitro splicing reaction of mouse immunoglobulin μ chain pre-mR- NAs. Nucleic Acids Res. 17:8159–8169.
  • Weber, S., and M. Aebi. 1988. In vitro splicing of mRNA precursors: 5′ cleavage site can be predicted from the interaction between the 5′ splice region and the 5′ terminus of U1 snRNA. Nucleic Acids Res. 16:471–486.
  • Wieringa, B., F. Meyer, J. Reiser, and C. Weissmann. 1983. Unusual splice sites revealed by mutagenic inactivation of an authentic splice site of the rabbit β-globin gene. Nature (London) 301:38–43.
  • Winship, P. R. 1989. An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Res. 17:1266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.