1
Views
8
CrossRef citations to date
0
Altmetric
Gene Expression

Multiple CArG Boxes in the Human Cardiac Actin Gene Promoter Required for Expression in Embryonic Cardiac Muscle Cells Developing In Vitro from Embryonal Carcinoma Cells

, &
Pages 4796-4803 | Received 09 Jul 1990, Accepted 10 Jun 1991, Published online: 31 Mar 2023

References

  • Adra, C. N., P. H. Boer, and M. W. McBurney. 1987. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene 60:65–74.
  • Auffray, C., and F. Rougeon. 1980. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107:303–314.
  • Bader, D., T. Masaki, and D. A. Fischmann. 1982. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95:763–770.
  • Baldwin, T. J., and S. J. Burden. 1989. Muscle-specific gene expression controlled by a regulatory element lacking a MyoD1- binding site. Nature (London) 341:716–720.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helixloop-helix DNA binding proteins. Cell 61:49–59.
  • Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1520.
  • Boer, P. H., H. Potten, C. N. Adra, K. Jardine, G. Mullhofer, and M. W. McBurney. 1990. Polymorphisms in the coding and non-coding regions of murine Pgk-1 alleles. Biochem. Genet. 28:299–308.
  • Bouvagnet, P. F., E. E. Strehler, G. E. White, M. Strehler-Page, B. Nadal-Ginard, and V. Mahdavi. 1987. Multiple positive and negative 5′ regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene. Mol. Cell. Biol. 7:4377–4389.
  • Boxer, L., R. Prywes, R. G. Roeder, and L. Kedes. 1989. The sarcomeric actin CarG-binding factor is indistinguishable from the c-fos serum response factor. Mol. Cell. Biol. 9:515–522.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701–708.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640.
  • Carroll, S. L., D. J. Bergsma, and R. J. Schwartz. 1988. A 29-nucleotide DNA segment containing an evolutionarily conserved motif is required in cis for cell-type-restricted repression of the chicken alpha-smooth muscle actin gene core promoter. Mol. Cell. Biol. 8:241–250.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Chow, K.-L., and R. J. Schwartz. 1990. A combination of closely associated positive and negative cis-acting promoter elements regulates transcription of the skeletal a-actin gene. Mol. Cell. Biol. 10:528–538.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected DNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Edmonson, D. G., and E. N. Olson. 1989. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3:628–640.
  • Edwards, M. K. S., J. F. Harris, and M. W. McBurney. 1983. Induced muscle differentiation in an embryonal carcinoma cell line. Mol. Cell. Biol. 3:2280–2286.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction fragments to high specific activity. Anal. Biochem. 132:6–7.
  • Gorman, C. M., G. T. Merlino, M. C. Willingham, I. Pastan, and H. Howard. 1982. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA 79:6777–6781.
  • Gunning, P., E. Hardeman, R. Wade, P. Ponte, W. Bains, H. M. Blau, and L. Kedes. 1987. Differential patterns of transcript accumulation during human myogenesis. Mol. Cell. Biol. 7:4100–4114.
  • Gunning, P., P. Ponte, H. Blau, and L. Kedes. 1983. Alpha- skeletal and alpha-cardiac genes are coexpressed in adult human skeletal muscle and heart. Mol. Cell. Biol. 3:1985–1995.
  • Gustafson, T. A., and L. Kedes. 1989. Identification of multiple proteins that interact with functional regions of the human cardiac a-actin promoter. Mol. Cell. Biol. 9:3269–3283.
  • Horlick, R. A., and P. A. Benfield. 1989. The upstream musclespecific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol. Cell. Biol. 9:2396–2413.
  • Jaynes, J. B., J. E. Johnson, J. N. Buskin, C. L. Gartside, and S. D. Hauschka. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a musclespecific enhancer. Mol. Cell. Biol. 8:62–70.
  • Johnson, J. E., B. J. Wold, and S. D. Hauschka. 1989. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol. Cell. Biol. 9:3393–3399.
  • Jones-Villeneuve, E. M. V., M. A. Rudnicki, J. F. Harris, and M. W. McBurney. 1983. Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 3:2271–2279.
  • Klamut, H. J., S. B. Gangopadhyay, R. G. Worton, and P. N. Ray. 1990. Molecular and functional analysis of the musclespecific promoter region of the Duchenne muscular dystrophy gene. Mol. Cell. Biol. 10:193–205.
  • Kothray, R., S. Clapoff, S. Darling, M. D. Perry, L. A. Moran, and J. Rossant. 1989. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development 105:707–714.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequencespecific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mar, J. H., and C. P. Ordahl. 1988. A conserved CATTCCT motif is required for skeletal muscle-specific activity of the troponin T gene promoter. Proc. Natl. Acad. Sci. USA 85:6404–6408.
  • Marko, M. A., R. Chipperfield, and H. C. Birnboim. 1982. A procedure for the large-scale isolation of highly purified plasmic DNA using alkaline extraction and binding to glass powder. Anal. Biochem. 121:382–387.
  • McBurney, M. W., E. M. Jones-Villeneuve, M. K. S. Edwards, and P. J. Anderson. 1982. Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature (London) 299:165–167.
  • Minty, A., H. Blau, and L. Kedes. 1986. Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors can accumulate before gene activation. Mol. Cell. Biol. 6:2137–2148.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Miwa, T., and L. Kedes. 1987. Duplicated CarG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene. Mol. Cell. Biol. 7:2803–2813.
  • Mohun, T. J., M. V. Taylor, N. Garrett, and J. B. Gurdon. 1989. The CarG promoter sequence is necessary for the musclespecific transcription of the cardiac actin gene in Xenopus embryos. EMBO J. 8:1153–1161.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Muscat, G. O., and L. Kedes. 1987. Multiple 5′-flanking regions of the human alpha-skeletal actin gene synergistically modulate muscle specific expression. Mol. Cell. Biol. 7:4089–4099.
  • Norton, P. A., and J. M. Coffin. 1985. Bacterial β-galactosidase as a marker of Rous sarcoma virus gene expression and replication. Mol. Cell. Biol. 5:281–290.
  • Olson, E. N. 1990. MyoD family: a paradigm for development. Genes Dev. 4:1454–1461.
  • Pearson, B., P. L. Wolf, and J. A. Vazquez. 1963. A comparative study of new indolyl compounds to localize beta-gal in tissues. Lab. Invest. 12:1249–1259.
  • Piette, J., J.-L. Bessereau, M. Huchet, and J.-P. Changeux. 1990. Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor alpha-subunit gene. Nature (London) 345:353–355.
  • Quitschke, W. W., L. DePonti-Zilli, Z.-Y. Lin, and B. M. Paterson. 1989. Identification of two nuclear factor-binding domains on the chicken cardiac actin promoter: implications for regulation of the gene. Mol. Cell. Biol. 9:3218–3230.
  • Rudnicki, M. A., G. Jackowski, L. Saggin, and M. W. McBurney. 1990. Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev. Biol. 138:348–358.
  • Rudnicki, M. A., and M. W. McBurney. 1987. Cell culture methods and induction of differentiation of embryonal carcinoma cell lines, p. 19–49. In E. J. Robinson (ed.), Teratocarcinomas and embryonic stem cells, a practical approach. IRL Press, Oxford.
  • Rudnicki, M. A., K. R. Reuhl, and M. W. McBurney. 1989. Cell lines with developmental potential restricted to mesodermal lineages isolated from differentiating cultures of pluripotential P19 embryonal carcinoma cells. Development 107:361–372.
  • Rudnicki, M. A., M. Ruben, and M. W. McBurney. 1988. Regulated expression of a transfected human cardiac actin gene during differentiation of multipotential murine EC cells. Mol. Cell. Biol. 8:406–417.
  • Sartorelli, V., K. A. Webster, and L. Kedes. 1990. Musclespecific expression of the cardiac alpha-actin gene requires myoD1, CArG-box binding factor, and Spl. Genes Dev. 4:1811–1822.
  • Schafer, B. W., B. T. Blakely, G. J. Darlington, and H. M. Blau. 1990. Effect of cell history on response to helix-loop-helix family of myogenic regulators. Nature (London) 344:454–458.
  • Shani, M. 1986. Tissue-specific and developmentally regulated expression of a chimeric actin-globin gene in transgenic mice. Mol. Cell. Biol. 6:2624–2631.
  • Sleigh, M. J. 1986. A nonchromatographic assay for expression of the chloramphenicol acetyl transferase gene in eukaryotic cells. Anal. Biochem. 156:251–256.
  • Southern, P. J., and P. Berg. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341.
  • Thomas, P. S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.
  • Weintraub, H., S. J. Tapscott, R. L. Davis, M. J. Thayer, M. A. Adam, A. B. Lassar, and A. D. Miller. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86:5434–5438.
  • Wright, W. E., D. A. Sussoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.