0
Views
8
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Test of the Double-Strand-Break Repair Model of Recombination in Xenopus laevis Oocytes

&
Pages 112-119 | Received 05 Jul 1991, Accepted 04 Oct 1991, Published online: 01 Apr 2023

References

  • Anderson, R. A., and S. L. Eliason. 1986. Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing. Mol. Cell. Biol. 6:3246–3252.
  • Baur, M., I. Potrykus, and J. Dasakowski. 1990. Intermolecular homologous recombination in plants. Mol. Cell. Biol. 10:492–500.
  • Bendig, M. M. 1981. Persistence and expression of histone genes injected into Xenopus eggs in early development. Nature (London) 292:65–67.
  • Brenner, D. A., C. Smigocki, and R. D. Camerini-Otero. 1985. Effect of insertions, deletions, and double-strand breaks on homologous recombination in mouse L cells. Mol. Cell. Biol. 5:684–691.
  • Cao, L., E. Alani, and N. Kleckner. 1990. A pathway for generation and processing of double-strand breaks during mei- otic recombination in 5. cerevisiae. Cell 61:1089–1101.
  • Carroll, D., S. H. Wright, R. K. Wolff, E. Grzesiuk, and E. B. Maryon. 1986. Efficient homologous recombination of linear DNA substrates after injection into Xenopus laevis oocytes. Mol. Cell. Biol. 6:2053–2061.
  • Cassuto, E., and C. M. Radding. 1971. Mechanism for the action of λ exonuclease in genetic recombination. Nature (London) New Biol. 229:13–16.
  • Certa, U., W. Bannwarth, D. Stuber, R. Gentz, M. Lanzer, S. Le Grice, F. Guillot, I. Wendler, G. Hunsmann, H. Bujard, and J. Mous. 1986. Subregions of a conserved part of the HIV gp41 transmembrane protein are differentially recognized by antibodies of infected individuals. EMBO J. 5:3051–3056.
  • Chakrabarti, S., and M. M. Seidman. 1986. Intramolecular recombination between transfected repeated sequences in mammalian cells is nonconservative. Mol. Cell. Biol. 6:2520–2526.
  • Folger, K. R., K. Thomas, and M. R. Capecchi. 1985. Nonreciprocal exchanges of information between DNA duplexes coinjected into mammalian cell nuclei. Mol. Cell. Biol. 5:59–69.
  • Grzesiuk, E., and D. Carroll. 1987. Recombination of DNAs in Xenopus oocytes based on short homologous overlaps. Nucleic Acids Res. 15:971–985.
  • Jasin, M., J. de Villiers, F. Weber, and W. Schaffner. 1985. High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes. Cell 43:695–703.
  • Jeong-Yu, S. 1990. Tests of specific models of homologous recombination in Xenopus oocytes. Ph.D. thesis. University of Utah, Salt Lake City.
  • Jeong-Yu, S., and D. Carroll. Unpublished data.
  • Kitamura, Y., H. Yoshikura, and I. Kobayashi. 1990. Homologous recombination in a mammalian plasmid. Mol. Gen. Genet. 222:185–191.
  • Kucherlapati, R. S., E. M. Eves, K.-Y. Song, B. S. Morse, and O. Smithies. 1984. Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc. Natl. Acad. Sci. USA 81:3153–3157.
  • Lehman, C. L., et al. Unpublished data.
  • Lichten, M., C. Goyon, N. P. Schultes, D. Treco, J. W. Szostak, J. E. Haber, and A. Nicolas. 1990. Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis. Proc. Natl. Acad. Sci. USA 87:7653–7657.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for the ends in the recombination process. Mol. Ceil. Biol. 4:1020–1034.
  • Lin, F.-L. M., K. Sperle, and N. Sternberg. 1990. Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a nonconservative pathway that leads to crossover products. Mol. Cell. Biol. 10:103–112.
  • Lin, F.-L. M., K. Sperle, and N. Sternberg. 1990. Repair of double-stranded breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol. Cell. Biol. 10:113–119.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Maryon, E. 1990. The role of molecular ends in homologous recombination of DNA injected into Xenopus oocytes. Ph.D. thesis. University of Utah, Salt Lake City.
  • Maryon, E., and D. Carroll. 1989. Degradation of linear DNA by a strand-specific exonuclease activity in Xenopus laevis oocytes. Mol. Cell. Biol. 9:4862–4871.
  • Maryon, E., and D. Carroll. 1991. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of nonho- mologous recombination. Mol. Cell. Biol. 11:3278–3287.
  • Orr-Weaver, T. L., and J. W. Szostak. 1985. Fungal recombination. Microbiol. Rev. 49:33–58.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Ozenberger, B. A., and G. S. Roeder. 1991. A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11:1222–1231.
  • Pfeiffer, P., and W. Vielmetter. 1988. Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acids Res. 16:907–924.
  • Resnick, M. A. 1976. The repair of double-strand breaks in DNA: a model involving recombination. J. Theor. Biol. 59:97–106.
  • Roth, D., and J. Wilson. 1988. Illegitimate recombination in mammalian cells, p. 621–653. In R. Kucherlapati and G. R. Smith (ed.), Genetic recombination. American Society for Microbiology, Washington, D.C.
  • Rudin, N., and J. E. Haber. 1988. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8:3918–3928.
  • Rudin, N., E. Sugarman, and J. E. Haber. 1989. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519–534.
  • Rusconi, S., and W. Schaffner. 1981. Transformation of frog embryos with a rabbit β-globin gene. Proc. Natl. Acad. Sci. USA 78:5051–5055.
  • Seidman, M. M. 1987. Intermolecular homologous recombination between transfected sequences in mammalian cells is primarily nonconservative. Mol. Cell. Biol. 7:3561–3565.
  • Seifert, H. S., E. Y. Chen, M. So, and F. Heffron. 1986. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83:735–739.
  • Smith, G. R. 1988. Homologous recombination in procaryotes. Microbiol. Rev. 52:1–28.
  • Subramani, S., and B. L. Seaton. 1988. Homologous recombination in mitotically dividing mammalian cells, p. 549–574. In R. Kucherlapati and G. R. Smith (ed.), Genetic recombination. American Society for Microbiology, Washington, D.C.
  • Sun, H., D. Treco, and J. W. Szostak. 1991. Extensive 3′- overhanging, single-stranded DNA associated with the meiosis- specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand break repair model for recombination. Cell 33:25–35.
  • Takahashi, N., and I. Kobayashi. 1990. Evidence for the doublestrand break repair model of bacteriophage λ recombination. Proc. Natl. Acad. Sci. USA 87:2790–2794.
  • Thaler, D. S., M. M. Stahl, and F. W. Stahl. 1987. Double-chain cut sites are recombination hotspots in the Red pathway of phage λ. J. Mol. Biol. 195:75–87.
  • Thaler, D. S., M. M. Stahl, and F. W. Stahl. 1987. Tests of the double-strand-break repair model for Red-mediated recombination of phage λ and plasmid λdv. Genetics 116:501–511.
  • Wake, C. T., F. Vernaleone, and J. H. Wilson. 1985. Topological requirements for homologous recombination among DNA molecules transfected into mammialian cells. Mol. Cell. Biol. 5:2080–2089.
  • White, C. I., and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663–673.
  • Wyllie, H. A., R. A. Laskey, J. Finch, and J. Gurdon. 1978. Selective DNA conservation and chromatin assembly after injection of SV40 DNA into Xenopus oocytes. Dev. Biol. 64:178–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.