9
Views
6
CrossRef citations to date
0
Altmetric
Gene Expression

Mutational Analysis of Conserved Positions Potentially Important for Initiator tRNA Function in Saccharomyces cerevisiae

, &
Pages 1432-1442 | Received 19 Sep 1991, Accepted 29 Dec 1991, Published online: 31 Mar 2023

REFERENCES

  • Avital, S., and D. Elson. 1969. A convenient procedure for preparing transfer ribonucleic acid from Escherichia coli. Bio- chim. Biophys. Acta 179:297–307.
  • Ayer, D., and Μ. Yarns. 1986. The context effect does not require a fourth base pair. Science 231:393–395.
  • Bare, L., A. G. Bruce, R. Gesteland, and O. C. Uhlenbeck. 1983. Uridine-33 in yeast tRNA not essential for amber suppression. Nature (London) 305:554–556.
  • Basavappa, R., and P. B. Sigler. 1991. The 3Å crystal structure of yeast initiator tRNA: functional implications in initiator/ elongator discrimination. EMBO J. 10:3105–3111.
  • Boeke, J. D., D. J. Garfinkel, C. A. Styles, and G. R. Fink. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positiveselection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast:5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Boeke, J. D., J. Truehardt, G. Natsoulis, and G. R. Fink. 1987. 5-fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Byström, A. S., and G. R. Fink. 1989. A functional analysis of the repeated methionine initiator tRNA genes (IMT) in yeast. Mol. Gen. Genet. 216:276–286.
  • Calagan, J. L., R. Μ. Pirtle, I. L. Pirtle, Μ. A. Kashdan, H. J. Vreman, and B. S. Dudock. 1980. Homology between chloroplast and prokaryotic initiator tRNA. Nucleotide sequence of spinach chloroplast methionine initiator tRNA. J. Biol. Chem. 255:9981–9984.
  • Cantor, C. R., and P. R. Schimmel. 1980. Biophysical chemistry. Part I. The conformation of biological macromolecules, p. 189. W. H. Freeman & Co., San Francisco.
  • Carlson, Μ., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Chapman, K. B., A. S. Byström, and J. D. Boeke. Proc. Natl. Acad. Sci. USA, in press.
  • Cigan, A. Μ., L. Feng, and T. F. Donahue. 1988. tRNAiMet functions in directing the scanning ribosome to the start site of translation. Science 242:93–97.
  • Curran, J. F., and Μ. Yanis. 1989. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J. Mol. Biol. 209:65–67.
  • Desgre’s, J., G. Keith, K. C. Kuo, and C. W. Gehrke. 1989. Presence of phosphorylated O-ribosyl-adenosine in Τ-ψ-stem of yeast methionine initiator tRNA. Nucleic Acids Res. 17:865–882.
  • Donahue, T. F., and Μ. Cigan. 1988. Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol. Cell. Biol. 8:2955–2963.
  • Drabkin, H. J., and U. L. RajBhandary. 1985. Site-specific mutagenesis on human initiator methionine tRNA gene within a sequence conserved in all eukaryotic initiator tRNAs and studies on its effects on in vitro transcription. J. Biol. Chem. 260:5580–5587.
  • Drabkin, H. J., and U. L. RajBhandary. 1985. Expression in vivo of a mutant human initiator tRNA gene in mammalian cells using a simian virus 40 vector. J. Biol. Chem. 260:5588–5595.
  • Eggertsson, G., and D. Söil. 1988. Transfer ribonucleic acid- mediated suppression of termination codons in Escherichia coli. Microbiol. Rev. 52:354–374.
  • Faulhammer, H. G., and R. L. Joshi. 1987. Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu. FEBS Lett. 217:203–211.
  • Francis, Μ. A., and U. L. RajBhandary. 1990. Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10:4486–4494.
  • Gill, D. R., G. F. Hatfull, and G. P. C. Salmond. 1986. A new cell division operon in Escherichia coli. Mol. Gen. Genet. 205:134–145.
  • Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580.
  • Hansen, P. K., F. Wikman, B. F. C. Clark, J. W. B. Hershey, and H. U. Petersen. 1986. Interaction between initiator Met- tRNAfMet and elongation factor EF-Tu from E. coli. Biochimie 68:697–703.
  • Hill, J. E., A. Μ. Myers, K. J. Koerner, and A. Tzagaloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Holmes, D. S., and Μ. Quigley. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114:193–197.
  • Hopper, A. K., A. H. Furukawa, H. D. Pham, and N. Martin. 1982. Defects in modification of cytoplasmic and mitochondrial transfer RNAs are caused by single nuclear mutations. Cell 28:543–550.
  • Housman, D., Μ. Jacobs-Lorena, U. L. RajBhandary, and H. F. Lodish. 1970. Initiation of haemoglobin synthesis by methionyl- tRNA. Nature (London) 227:913–918.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jank, P., D. Riesner, and H. J. Gross. 1977. Rabbit liver tRNA1Val: unusual secondary structure of TψC stem and loop due to a U54:A60 base pair. Nucleic Acids Res. 4:2009–2020.
  • Kiesewetter, S., G. Ott, and Μ. Sprinzl. 1990. The role of modified purine 64 in initiator/elongator discrimination of tRNAiMet from yeast and wheat germ. Nucleic Acids Res. 18:4677–4682.
  • Kim, S. H., F. L. Suddath, F. L. Quigley, A. McPherson, J. L. Sussman, A. H. J. Wang, N. C. Seeman, and A. Rich. 1974. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435–440.
  • Kozak, Μ. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47:145.
  • Kudo, I., Μ. Leineweber, and U. L. RajBhandary. 1981. Sitespecific mutagenesis on cloned DNAs: generation of a mutant of Escherichia coli tyrosine suppressor tRNA in which the sequence G-T-T-C corresponding to the universal G-T-ψ-C sequence of tRNAs is changed to G-A-T-C. Proc. Natl. Acad. Sei. USA 78:4753–4757.
  • Kunkel, T. A. 1985. Rapid and efficient site specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Messing, J., R. Crea, and P. H. Seeburg. 1981. A system for shotgun DNA sequencing. Nucleic Acids Res. 9:309–321.
  • Meussdoerffer, F., and G. R. Fink. 1983. Structure and expression of two aminoacyl-tRNA synthetase genes from Saccharomyces cerevisiae. J. Biol. Chem. 258:6293–6299.
  • Murgola, E. J. 1985. tRNA, suppression, and the code. Annu. Rev. Genet. 19:57–80.
  • Nakamaye, K. L., and F. Eckstein. 1986. Inhibition of restriction endonuclease Nci I cleavage by phosphothioate groups and its application to oligonucleotide directed mutagenesis. Nucleic Acids Res. 14:9679–9698.
  • Normanly, J., and J. Abelson. 1988. tRNA identity. Annu. Rev. Biochem. 58:1029–1049.
  • Petersen, H. U., T. A. Kruse, H. Worm-Leonhard, G. E. Siboska, B. F. C. Clark, A. S. Boutorin, P. Remy, J. P. Ebel, J. Dondon, and Μ. Grunberg-Manago. 1981. A study of the interaction of Escherichia coli initiation factor IF2 with formylme- thionyl-tRNAfMet by partial digestion with cobra venom ribonuclease. FEBS Lett. 128:161–165.
  • Reilly, Μ. R., and U. L. RajBhandary. 1986. A single mutation in loop IV of Escherichia coli SuIII tRNA blocks processing at both 5′- and 3′-ends of the precursor tRNA. J. Biol. Chem. 261:2928–2935.
  • Robertas, J. D., J. E. Ladner, J. T. Finch, D. Rhodes, R. S. Brown, B. F. C. Clark, and A. Klug. 1974. Structure of yeast phenylalanine tRNA at 3Â resolution. Nature (London) 250:546–551.
  • Rose, Μ. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere containing shuttle vector. Gene 60:237–243.
  • Rose, Μ. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schevitz, R. W., A. D. Podjarny, N. Krishnamachari, J. J. Hughes, and P. B. Sigler. 1979. Crystal structure of a eukaryotic initiator tRNA. Nature (London) 278:188–190.
  • Schimmel, P. 1989. Parameters for molecular recognition of transfer RNAs. Biochemistry 28:2747–2759.
  • Schulman, L. H., and H. Pelka. 1988. Anticodon switching changes the identity of methionine and valine transfer RNAs. Science 242:765–768.
  • Seong, B. L., and U. L. RajBhandary. 1987. Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc. Natl. Acad. Sci. USA 84:8859–8863.
  • Seong, B. L., and U. L. RajBhandary. 1987. Escherichia coli formylmethionine tRNA: mutations in GGGccc sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc. Natl. Acad. Sci. USA 84:334–338.
  • Sherman, F., G. McKnight, and J. W. Stewart. 1980. AUG is the only initiation codon in eukaryotes. Biochim. Biophys. Acta 609:343–346.
  • Sikorski, R. S., and P. Bieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smith, A. E., and K. A. Marcker. 1970. Cytoplasmic methionine transfer RNAs from eukaryotes. Nature (London) 226:607–610.
  • Sprinzl, Μ., T. Hartmann, F. Meissner, J. Moll, and T. Vorderwulbecke. 1987. Compilation of tRNA sequences of tRNA genes. Nucleic Acids Res. 15:r53–r188.
  • Sundari, R. Μ., E. A. Stringer, L. H. Schulmann, and U. Maitra. 1976. Interaction of bacterial initiation factor 2 with initiator tRNA. J. Biol. Chem. 251:3338–3345.
  • Wagner, T., Μ. Gross, and P. B. Sigler. 1984. Isoleucyl initiator tRNA does not initiate eukaryotic protein synthesis. J. Biol. Chem. 259:4706–4709.
  • Wagner, T., C. Rundquist, Μ. Gross, and P. B. Sigler. 1989. Structural features that underlie the use of bacterial Met- tRNAfMet primarily as an elongator in eukaryotic protein synthesis. J. Biol. Chem. 264:18506–18511.
  • Wakao, H., P. Romby, E. Westhof, S. Laalami, Μ. Grunberg-Manago, J. P. Ebel, C. Ehresmann, and B. Ehresmann. 1989. The solution structure of the Escherichia coli initiator tRNA and its interactions with initiation factor 2 and the ribosomal 30 S subunit. J. Biol. Chem. 264:20363–20371.
  • Wrede, P., N. H. Woo, and A. Rich. 1979. Initiator tRNAs have a unique anticodon loop formation. Proc. Natl. Acad. Sci. USA 76:3289–3293.
  • Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mpl8 and pUC19 vectors. Gene 33:103–119.
  • Yarus, Μ., S. W. Cline, P. Wier, L. Breeden, and R. C. Thompson. 1986. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J. Mol. Biol. 192:235–255.
  • Zitomer, R. S., D. A. Walthall, B. Rymond, and C. P. Hollenberg. 1984. Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons. Mol. Cell. Biol. 4:1191–1197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.