1
Views
7
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Role and Fate of DNA Ends for Homologous Recombination in Embryonic Stem Cells

, &
Pages 2464-2474 | Received 06 Dec 1991, Accepted 06 Mar 1992, Published online: 31 Mar 2023

References

  • Anderson, R. Α., and S. L. Eliason. 1986. Recombination of homologous DNA fragments transfected into mammalian cells occurs predominantly by terminal pairing. Mol. Cell. Biol. 6:3246–3252.
  • Brenner, D. Α., A. C. Smigocki, and R. D. Camerini-Otero. 1985. Effect of insertions, deletions, and double-strand breaks on homologous recombination in mouse L cells. Mol. Cell. Biol. 5:684–691.
  • Brenner, D. Α., A. C. Smigocki, and R. D. Camerini-Otero. 1986. Double-strand gap repair results in homologous recombination in mouse L cells. Proc. Natl. Acad. Sci. USA 83:1762–1766.
  • Capecchi, M. R. 1989. Altering the genome by homologous recombination. Science 244:1288–1292.
  • Chakrabarti, S., and Μ. Μ. Seidman. 1986. Intramolecular recombination between transfected repeated sequences in mammalian cells is nonconservative. Mol. Cell. Biol. 6:2520–2526.
  • Hasty, P., R. Ramírez-Solis, R. Krumlauf, and A. Bradley. 1991. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature (London) 350:243–246.
  • Hasty, P., J. Rivera-Perez, and A. Bradley. 1991. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11:5586–5591.
  • Hasty, P., J. Rivera-Perez, C. Chang, and A. Bradley. 1991. Targeting frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol. Cell. Biol. 11:4509–4517.
  • Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. 5:282–304.
  • Jasin, M., and P. Berg. 1988. Homologous integration in mammalian cells without target gene selection. Genes Dev. 2:1353–1363.
  • Kucherlapati, R. S., E. M. Eves, K. Song, B. S. Morse, and O. Smithies. 1984. Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc. Natl. Acad. Sci. USA 81:3153–3157.
  • Lin, F., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4:1020–1034.
  • Lin, F. Μ., Κ. Sperle, and N. Sternberg. 1990. Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a nonconservative pathway that leads to crossover products. Mol. Cell. Biol. 10:103–112.
  • Lin, F. Μ., Κ. Sperle, and N. Sternberg. 1990. Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol. Cell. Biol. 10:113–119.
  • Mansour, S. L., K. R. Thomas, and M. R. Capecchi. 1988. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature (London) 336:348–352.
  • Mansour, S. L., K. R. Thomas, C. Deng, and M. R. Capecchi. 1990. Introduction of a lacZ reporter gene into the mouse int-2 locus by homologous recombination. Proc. Natl. Acad. Sci. USA 87:7688–7692.
  • Maryon, E., and D. Carroll. 1991. Involvement of single-stranded tails in homologous recombination of DNA injected into Xenopus laevis oocyte nuclei. Mol. Cell. Biol. 11:3268–3277.
  • Maryon, E., and D. Carroll. 1991. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol. Cell. Biol. 11:3278–3287.
  • McMahon, A. P., and A. Bradley. 1990. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085.
  • Melton, D. W., D. S. Konecki, J. Brennand, and C. T. Caskey. 1984. Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proc. Natl. Acad. Sci. USA 81:2147–2151.
  • Meselson, M. S., and C. M. Radding. 1975. A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72:358–361.
  • Murnane, J. P., M. J. Yezzi, and B. R. Young. 1990. Recombination events during integration of transfected DNA into normal human cells. Nucleic Acids Res. 18:2733–2738.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Pennington, S. L., and J. H. Wilson. 1991. Gene targeting in Chinese hamster ovary cells is conservative. Proc. Natl. Acad. Sci. USA 88:9498–9502.
  • Resnick, M. A. 1976. The repair of double-strand breaks in DNA: a model involving recombination. J. Theor. Biol. 59:97–106.
  • Robertson, E. J. 1987. Embryo-derived stem cell lines, p. 71–112. In E. J. Robertson (ed.), Teratocarcinomas and embryonic stem cells: a practical approach. IRL Press, Oxford.
  • Schultes, N. P., and J. W. Szostak. 1991. A poly(dA-dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:322–328.
  • Shulman, M. J., L. Nissen, and C. Collins. 1990. Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol. Cell. Biol. 10:4466–4472.
  • Siedman, Μ. Μ. 1987. Intermolecular homologous recombination between transfected sequences in mammalian cells is primarily nonconservative. Mol. Cell. Biol. 7:3561–3565.
  • Smithies, O., R. G. Gregg, S. S. Boggs, M. A. Koralewski, and R. S. Kucherlapati. 1985. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature (London) 317:230–234.
  • Song, K., L. Chekuri, S. Rauth, S. Ehrlich, and R. Kucherlapati. 1985. Effect of double-strand breaks on homologous recombination in mammalian cells and extracts. Mol. Cell. Biol. 5:3331–3336.
  • Soriano, P., C. Montgomery, R. Geske, and A. Bradley. 1991. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702.
  • Sun, H., D. Treco, and J. W. Szostak. 1991. Extensive 3-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double strand break repair model for recombination. Cell 33:25–35.
  • Thomas, K. R., and M. R. Capecchi. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512.
  • Valancius, V., and O. Smithies. 1991. Double-strand break repair in a mammalian gene targeting reaction. Mol. Cell. Biol. 11:4389–4397.
  • Wake, C. T., F. Vernaleone, and J. H. Wilson. 1985. Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells. Mol. Cell. Biol. 5:2080–2089.
  • Waldman, A. S., and R. M. Liskay. 1987. Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells. Proc. Natl. Acad. Sci. USA 84:5340–5344.
  • Waldman, A. S., and R. M. Liskay. 1988. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8:5350–5357.
  • Wilson, J. H., P. B. Berget, and J. M. Pipas. 1982. Somatic cells efficiently join unrelated DNA segments end to end. Mol. Cell. Biol. 2:1258–1269.
  • Zheng, H., P. Hasty, M. A. Brenneman, M. Grompe, R. A. Gibbs, J. H. Wilson, and A. Bradley. 1991. Fidelity of targeted recombination in human fibroblasts and murine embryonic stem cells. Proc. Natl. Acad. Sci. USA 88:8067–8071.
  • Zheng, H., and J. Wilson. 1990. Gene targeting in normal and amplified cell lines. Nature (London) 344:170–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.