5
Views
45
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The 19-Kilodalton Adenovirus E1B Transforming Protein Inhibits Programmed Cell Death and Prevents Cytolysis by Tumor Necrosis Factor α

, , , , &
Pages 2570-2580 | Received 08 Jan 1992, Accepted 16 Mar 1992, Published online: 31 Mar 2023

References

  • Ames, R. S., B. Holskin, M. Mitcho, D. Shalloway, and M.-J. Chen. 1990. Induction of sensitivity to the cytotoxic action of tumor necrosis factor alpha by adenovirus E1A is independent of transformation and transcriptional activation. J. Virol. 64:4115–4122.
  • Barker, D. D., and A. J. Berk. 1987. Adenovirus proteins from both reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156:107–131.
  • Berk, A. J. 1986. Adenovirus promoters and E1A transactivation. Annu. Rev. Genet. 20:5–79.
  • Bernards, R., M. G. W. deLeeuw, A. Houweling, and A. J. van der Eb. 1986. Role of the adenovirus early region 1B tumor antigens in transformation and lytic infection. Virology 150:126–139.
  • Beutler, B., and A. Cerami. 1986. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature (London) 320:584–588.
  • Bishop, J. M. 1991. Molecular themes in oncogenesis. Cell 64:235–248.
  • Braithwaite, A. W., C. C. Nelson, and A. J. Bellett. 1991. E1A revisited: the case for multiple cooperative transactivation domains. New Biol. 3:18–26.
  • Branton, P. E., S. T. Bayley, and F. L. Graham. 1985. Transformation by human adenoviruses. Biochim. Biophys. Acta 780:67–94.
  • Chen, M.-J., B. Holskin, J. Strickler, J. Gorniak, M. A. Clark, P. J. Johnson, M. Mitcho, and D. Shalloway. 1987. Induction by E1A oncogene expression of cellular susceptibility to lysis by TNF. Nature (London) 330:581–583.
  • Chinnadurai, G. 1983. Adenovirus 2 lp+ locus codes for a 19kd tumor antigen that plays an essential role in cell transformation. Cell 33:759–766.
  • Cook, J. L., D. L. May, B. A. Wilson, B. Holskin, M.-J. Chen, D. Shalloway, and T. A. Walker. 1989. Role of tumor necrosis factor-α in E1A oncogene-induced susceptibility of neoplastic cells to lysis by natural killer cells and activated macrophages. J. Immunol. 142:4527–4534.
  • Dealtry, G., M. S. Naylor, W. Fiers, and F. R. Balkwill. 1987. DNA fragmentation and cytotoxicity caused by tumor necrosis factor is enhanced by interferon-7. Eur. J. Immunol. 17:689–693.
  • Duerksen-Hughes, P. J., T. W. Hermiston, W. S. M. Wold, and L. R. Gooding. 1991. The amino-terminal portion of CD1 of the adenovirus E1A proteins is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse cells. J. Virol. 65:1236–1244.
  • Duerksen-Hughes, P., W. S. M. Wold, and L. R. Gooding. 1989. Adenovirus E1A renders infected cells sensitive to cytolysis by tumor necrosis factor. J. Immunol. 143:4193–4200.
  • Flint, S. J. 1984. Cellular transformation by adenovirus. Pharmacol. Ther. 26:59–88.
  • Gendelman, H. E., W. Phelps, L. Feigenbaum, J. M. Ostrove, A. Adachi, P. M. Howley, G. Khoury, H. S. Ginsberg, and M. A. Martin. 1988. Transactivation of the human immunodeficiency virus long terminal repeat sequences by DNA viruses. Proc. Natl. Acad. Sci. USA 83:9759–9763.
  • Gooding, L. R., L. Aquino, P. J. Duerksen-Hughes, D. Day, T. M. Horton, S. Yei, and W. S. M. Wold. 1991. The E1B-19K protein of group C adenoviruses prevents cytolysis by tumor necrosis factor of human cells but not mouse cells. J. Virol. 65:3083–3094.
  • Gooding, L. R., L. W. Elmore, A. E. Tollefson, H. A. Brady, and W. S. M. Wold. 1988. A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53:341–346.
  • Gooding, L. R., R. Ranheim, A. E. Tollefson, L. Aquino, P. Duerksen-Hughes, T. M. Horton, and W. S. M. Wold. 1991. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J. Virol. 65:4114–4123.
  • Gorman, C. M., F. L. Moffat, and Β. Η. Howard. 1982. Recombinant genomes which express chloramphenicol actyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Graham, F. O., J. Smiley, W. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–72.
  • Grand, R. J., C. Roberts, and P. H. Gallimore. 1985. Acylation of adenovirus type 12 early region lb 18-kDa protein. FEBS Lett. 181:229–235.
  • Hashimoto, S., A. Ishii, and S. Yonehara. 1991. The E1B oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int. Immunol. 3:343–351.
  • Henderson, S., M. Rowe, C. Gregory, D. Croom-Carter, F. Wang, R. Longnecker, E. Keiff, and A. Rickinson. 1991. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected Β cells from programmed cell death. Cell 65:1107–1115.
  • Herrmann, C. H., C. V. Dery, and Μ. Β. Mathews. 1987. Transactivation of host and viral genes by the adenovirus E1B 19K tumor antigen. Oncogene 2:25–35.
  • Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26:365–369.
  • Hockenbery, D., G. Nunez, C. Milliman, R. D. Schreiber, and S. Korsmeyer. 1990. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature (London) 348:334–336.
  • Hohmann, H., R. Remy, M. Brockhous, and A. van Loon. 1989. Two different cell types have different major receptors for human tumor necrosis factor (TNF-α). J. Biol. Chem. 264:14927–14934.
  • Houweling, Α., P. J. van den Elsen, and A. J. van der Eb. 1980. Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105:537–550.
  • Itoh, N., S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata. 1991. The polypeptides encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243.
  • Jones, N., and T. Shenk. 1979. Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17:683–689.
  • Kaczmarek, L., B. Ferguson, M. Rosenberg, and R. Baserga. 1986. Induction of cellular DNA synthesis by purified adenovirus E1A proteins. Virology 152:1–10.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • Laster, S. M., J. G. Good, and L. R. Gooding. 1988. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141:2629–2634.
  • Markwell, M., and C. Fox. 1978. Surface-specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3α,6α-diphenylclycoluril. Biochemistry 17:4807–4817.
  • McGlade, C. J., M. L. Tremblay, and P. E. Branton. 1989. Mapping of a phosphorylation site in the 176R (19kDa) early region 1B protein of human adenovirus type 5. Virology 168:119–127.
  • McGlade, C. J., M. J. Tremblay, S.-P. Yee, R. Ross, and P. E. Branton. 1987. Acylation of the 176R (19-kilodalton) early region 1B protein of human adenovirus type 5. J. Virol. 61:3227–3234.
  • McLorie, W., C. J. McGlade, D. Takayesu, and P. E. Branton. 1991. Individual adenovirus E1B proteins induce transformation independently but by additive pathways. J. Gen. Virol. 72:1467–1471.
  • Mestan, J., W. Digel, S. Mittnacht, H. Hillen, D. Blohm, A. Moller, H. Jacobsen, and H. Kirchner. 1986. Antiviral effects of recombinant tumour necrosis factor in vivo. Nature (London) 323:816–819.
  • Moran, E., and Μ. Β. Mathews. 1987. Multiple functional domains in the adenovirus E1A gene. Cell 48:177–178.
  • Natarajan, V. 1986. Adenovirus E1A and E1B gene products regulate enhancer mediated transcription. Nucleic Acids Res. 14:9445–9455.
  • Pilder, S., J. Logan, and T. Shenk. 1984. Deletion of the gene encoding the adenovirus 5 early region 1B-21,000-molecular-weight polypeptide leads to degradation of viral and cellular DNA. J. Virol. 52:664–671.
  • Priore, R., and H. Rosenthal. 1976. A statistical method for the estimation of binding parameters in a complex system. Anal. Biochem. 70:231–240.
  • Raychaudhuri, P., S. Bagchi, S. Devoto, S. H. Kraus, E. Moran, and J. Nevins. 1991. Domains of the adenovirus E1A protein that are required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev. 5:1200–1211.
  • Rubin, B., S. Anderson, S. Sullivan, B. Williamson, E. Carswell, and L. Old. 1985. High affinity binding of 125I-labeled human tumor necrosis factor (LuKII) to specific cell surface receptors. J. Exp. Med. 162:1099–1104.
  • Ruley, H. E. 1983. Adenovirus early region 1A enabels viral and cellular transforming genes to transform primary cells in culture. Nature (London) 304:602–606.
  • Sarnow, P., Y. Shih Ho, J. Williams, and A. J. Levine. 1982. Adenovirus E1b-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28:387–394.
  • Shenk, T., and J. Flint. 1991. Transcriptional and transforming activities of the adenovirus E1A proteins. Adv. Cancer Res. 57:47–85.
  • Shiroki, Κ., Η. Kato, and S. Kawai. 1990. Tandemly repeated hexamer sequences within the beta interferon promoter can function as an inducible regulatory element in activation by the adenovirus E1B 19-kilodalton protein. J. Virol. 64:3063–3068.
  • Stabel, S., P. Argos, and L. Philipson. 1985. The release of growth arrest by microinjection of adenovirus E1A DNA. EMBO J. 4:2329–2336.
  • Subramanian, T., and G. Chinnadurai. 1986. Separation of the functions controlled by the adenovirus 2 lp+ locus. Virology 150:381–389.
  • Subramanian, T., M. Kuppuswamy, J. Gysbers, S. Mak, and G. Chinnadurai. 1984. 19-kDa tumor antigen coded by early region E1b of adenovirus 2 is required for efficient synthesis and for protection of viral DNA. J. Biol. Chem. 259:11777–11783.
  • Takemori, N., C. Cladaras, B. Bhat, A. J. Conley, and W. S. M. Wold. 1984. cyt gene of adenovirus 2 and 5 is an oncogene for transforming function in early region E1B and encodes the E1B 19,000-molecular-weight polypeptide. J. Virol. 52:793–805.
  • Takemori, N., J. L. Riggs, and C. Aldrich. 1968. Genetic studies with tumorigenic adenoviruses. I. Isolation of cytocidal (cyt) mutants of adenovirus type 12. Virology 36:575–586.
  • Tsujimoto, Y., L. R. Finger, J. Ynis, P. C. Nowell, and C. M. Croce. 1974. Cloning of the chromosome breakpoint of neoplastic Β cells with the t(14;18) chromosomal translocation. Science 226:1097–1099.
  • Vanhaesebroeck, B., H. T. M. Timmers, G. J. Pronk, F. vaan-Roy, A. J. van der Eb, and W. Fiers. 1990. Modulation of cellular susceptibility to the cytotoxic/cytostatic action of tumor necrosis factor by adenovirus E1 gene expression is cell type-dependent. Virology 176:362–368.
  • Wallach, D. 1984. Preparations of lymphotoxin induce resistance to their own cytotoxic effect. J. Immunol. 132:2464–2469.
  • Wallach, D. 1986. Cytotoxins (tumor necrosis factor, lymphotoxin, and others): molecular and functional characteristics and interactions with interferons. Interferon 7:89–124.
  • White, E., S. H. Blose, and B. Stillman. 1984. Nuclear envelope localization of an adenovirus tumor antigen maintains the integrity of cellular DNA. Mol. Cell. Biol. 4:2865–2875.
  • White, E., and S. Chiou. Unpublished data.
  • White, E., and R. Cipriani. 1989. Specific disruption of intermediate filaments and the nuclear lamina by the 19-kDa product of the adenovirus E1B oncogene. Proc. Natl. Acad. Sci. USA 86:9886–9890.
  • White, E., and R. Cipriani. 1990. Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol. Cell. Biol. 10:120–130.
  • White, E., R. Cipriani, P. Sabbatini, and A. Denton. 1991. Adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins. J. Virol. 65:2968–2978.
  • White, E., M. Debbas, and W. S. M. Wold. Unpublished data.
  • White, E., A. Denton, and B. Stillman. 1988. Role of the adenovirus E1B 19,000-dalton tumor antigen in regulating early gene expression. J. Virol. 62:3445–3454.
  • White, Ε., Β. Faha, and B. Stillman. 1986. Regulation of adenovirus gene expression in human WI38 cells by an E1B-encoded tumor antigen. Mol. Cell. Biol. 6:3763–3773.
  • White, E., T. Grodzicker, and B. W. Stillman. 1984. Mutations in the gene encoding the adenovirus E1B 19K tumor antigen cause degradation of chromosomal DNA. J. Virol. 52:410–419.
  • White, E., and P. Sabbatini. Unpublished data.
  • White, E., P. Sabbatini, M. Debbas, and L. Rao. Submitted for publication.
  • White, E., and B. Stillman. 1987. Expression of the adenovirus E1B mutant phenotypes is dependent on the host cell and on synthesis of E1A proteins. J. Virol. 61:426–435.
  • Williams, G. 1991. Programmed cell death: apoptosis and oncogenesis. Cell 65:1097–1098.
  • Wong, G., J. Elwell, L. Oberley, and D. Goeddel. 1989. Manga-nous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58:923–931.
  • Wong, G., and D. Goeddel. 1986. Tumour necrosis factors α and β inhibit virus replication and synergize with interferons. Nature (London) 323:819–822.
  • Wyllie, A. H. 1980. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature (London) 284:555–556.
  • Wyllie, A. H., K. A. Rose, R. G. Morris, C. M. Steel, E. Foster, and D. A. Spandidos. 1987. Rodent fibroblast tumours expressing human myc and ras genes: growth, metastasis and endogenous oncogene expression. Br. J. Cancer 56:251–259.
  • Yoshida, K., L. Venkatesh, M. Kuppuswamy, and G. Chinnadurai. 1987. Adenovirus transforming 19-kD Τ antigen has an enhancer dependent trans-activation function and relieves enhancer repression mediated by viral and cellular genes. Genes Dev. 1:645–658.
  • Zerler, B., R. Roberts, M. Mathews, and E. Moran. 1987. Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products. Mol. Cell. Biol. 7:821–829.
  • Zoller, M. J., and M. Smith. 1984. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3:479–488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.