6
Views
19
CrossRef citations to date
0
Altmetric
Gene Expression

Posttranslational Control of Ty1 Retrotransposition Occurs at the Level of Protein Processing

&
Pages 2813-2825 | Received 30 Dec 1991, Accepted 26 Mar 1992, Published online: 31 Mar 2023

References

  • Adams, S. E., J. Mellor, K. Gull, R. B. Sim, M. F. Tuite, S. M. Kingsman, and A. J. Kingsman. 1987. The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins. Cell 49:111–119.
  • Belcourt, M. F., and P. J. Farabaugh. 1990. Ribosomal frame-shifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62:339–352.
  • Boeke, J. D., D. Eichinger, D. Castrillon, and G. R. Fink. 1988. The Saccharomyces cerevisiae genome contains functional and nonfunctional copies of transposon Tyl. Mol. Cell. Biol. 8:1431–1442.
  • Boeke, J. D., D. J. Garfinkel, C. A. Styles, and G. R. Fink. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine 5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Boeke, J. D., and S. B. Sandmeyer. 1991. Yeast transposable elements. In J. R. Broach, J. Pringle, and E. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., p. 193-261.
  • Boeke, J. D., C. A. Styles, and G. R. Fink. 1986. Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell. Biol. 6:3575–3581.
  • Boeke, J. D., H. Xu, and G. R. Fink. 1988. A general method for the chromosomal amplification of genes in yeast. Science 239:280–282.
  • Broach, J. R., J. N. Strathern, and J. B. Hicks. 1979. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121–133.
  • Clare, J., and P. J. Farabaugh. 1985. Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc. Natl. Acad. Sci. USA 82:2828–2833.
  • Curcio, M. J., and D. J. Garfinkel. 1991. Single-step selection for Tyl element retrotransposition. Proc. Natl. Acad. Sci. USA 88:936–940.
  • Curcio, M. J., and D. J. Garfinkel. Unpublished results.
  • Curcio, M. J., A.-M. Hedge, J. D. Boeke, and D. J. Garfinkel. 1990. Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 220:213–221.
  • Curcio, M. J., N. J. Sanders, and D. J. Garfinkel. 1988. Transcriptional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition. Mol. Cell. Biol. 8:3571–3581.
  • Doolittle, R. F., D.-F. Feng, M. S. Johnson, and M. A. McClure. 1989. Origins and evolutionary relationships of retroviruses. Q. Rev. Biol. 64:1–30.
  • Eichinger, D. J., and J. D. Boeke. 1988. The DNA intermediate in yeast Tyl element transposition copurifies with virus-like particles: cell-free Tyl transposition. Cell 54:955–966.
  • Elder, R. T., T. P. St. John, D. T. Stinchcomb, and R. W. Davis. 1980. Studies on the transposable element Tyl of yeast. I. RNA homologous to Tyl. Cold Spring Harbor Symp. Quant. Biol. 45:581–584.
  • Garfinkel, D. J., J. D. Boeke, and G. R. Fink. 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42:507–517.
  • Garfinkel, D. J., M. J. Curcio, S. D. Youngren, and N. J. Sanders. 1988. The biology and exploitation of the retrotransposon Ty in Saccharomyces cerevisiae. Genome 31:909–919.
  • Garfinkel, D. J., A.-M. Hedge, S. D. Youngren, and T. D. Copeland. 1991. Proteolytic processing of pol-TYB proteins from the yeast retrotransposon Tyl. J. Virol. 65:4573–4581.
  • Garfinkel, D. J., M. F. Mastrangelo, N. J. Sanders, Β. Κ. Shafer, and J. N. Strathern. 1988. Transposon tagging using Ty elements in yeast. Genetics 120:95–108.
  • Garfinkel, D. J., and S. D. Youngren. Unpublished results.
  • Guarente, L., R. R. Yocum, and P. Gifford. 1982. A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc. Natl. Acad. Sci. USA 79:1173–1181.
  • Hauber, J., P. Nelbock-Hochstetter, and H. Feldman. 1985. Nucleotide sequence and characteristics of a Ty element from yeast. Nucleic Acids Res. 13:2745–2758.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Joyce, C. M., and N. D. F. Grindley. 1984. Methods for determining whether a gene of Escherichia coli is essential: application to the polA gene. J. Bacteriol. 158:636–643.
  • Krausslich, H.-G., H. Schneider, G. Zybarth, C. A. Carter, and E. Wimmer. 1988. Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli. J. Virol. 62:4393–4397.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:68–85.
  • Lea, D. E., and C. A. Coulson. 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–285.
  • Melton, D. Α., P. A. Kreig, M. R. Rebagliati, T. Maniatis, K. Zinn, and M. R. Green. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.
  • Muller, F., K.-H. Bruhl, K. Freidel, K. V. Kowallik, and M. Ciriacy. 1987. Processing of Tyl proteins and formation of Tyl virus-like particles in Saccharomyces cerevisiae. Mol. Gen. Genet. 207:421–429.
  • Muller, F., W. Laufer, U. Pott, and M. Ciriacy. 1991. Characterization of products of TY1-mediated reverse transcription in Saccharomyces cerevisiae. Mol. Gen. Genet. 226:145–153.
  • Picologlou, S., N. Brown, and S. W. Liebman. 1990. Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition. Mol. Cell. Biol. 10:1017–1022.
  • Schauer, I., S. Emr, C. Gross, and R. Schekman. 1985. Invertase signal and mature sequence substitutions that delay intercom-partmental transport of active enzyme. J. Cell Biol. 100:1664–1675.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Winston, F., K. J. Durbin, and G. R. Fink. 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39:675–682.
  • Xu, H., and J. D. Boeke. 1990. Localization of sequences required in cis for yeast Ty1 element transposition near the long terminal repeats: analysis of mini-Ty1 elements. Mol. Cell. Biol. 10:2695–2702.
  • Youngren, S. D., J. D. Boeke, N. J. Sanders, and D. J. Garfinkel. 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol. Cell. Biol. 8:1421–1431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.