3
Views
2
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Differential Binding of Zinc Fingers from Xenopus TFIIIA and p43 to 5S RNA and the 5S RNA Gene

&
Pages 3155-3164 | Received 10 Jan 1992, Accepted 28 Apr 1992, Published online: 01 Apr 2023

References

  • Baudin, F., and P. J. Romaniuk. 1989. A difference in the importance of bulged nucleotides and their parent base pairs in the binding of transcription factor ΠΙΑ to Xenopus 5S RNA and 5S RNA genes. Nucleic Acids Res. 17:2043–2056.
  • Baudin, F., P. Romby, P. J. Romaniuk, B. Ehresmann, and C. Ehresmann. 1989. Crosslinking of transcription factor TFIIIA to ribosomal 5S RNA from X. laevis by transdiamminedichloro-platinum (II). Nucleic Acids Res. 17:10035–10046.
  • Berg, J. M. 1988. Proposed structure for the zinc-binding domains from transcription factor ΠΙΑ and related proteins. Proc. Natl. Acad. Sci. USA 85:99–102.
  • Brown, R., C. Sander, and P. Argos. 1985. The primary structure of transcription factor TFIIIA has twelve consecutive repeats. FEBS Lett. 186:271–274.
  • Call, K. M., T. Glaser, C. Y. Ito, A. J. Buckler, J. Pelletier, D. A. Haber, E. A. Rose, A. Kral, H. Yeger, W. H. Lewis, C. Jones, and D. E. Housman. 1990. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520.
  • Chavrier, P., M. Zerial, P. Lemaire, J. Almendral, R. Bravo, and P. Charnay. 1988. A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J. 7:29–35.
  • Chowdhury, K., U. Deutsch, and P. Gruss. 1987. A multigene family encoding several "finger" structures is present and differentially active in mammalian genomes. Cell 48:771–778.
  • Christensen, J. H., P. K. Hansen, O. Lillelund, and H. C. Thøgersen. 1991. Sequence-specific binding of the N-terminal three-finger fragment of Xenopus transcription factor ΠΙΑ to the internal control region of a 5S RNA gene. FEBS Lett. 281:181–184.
  • Christiansen, J., R. Brown, B. Sproat, and R. Garrett. 1988. Xenopus transcription factor ΠΙΑ binds primarily at junctions between double helical stems and internal loops in oocyte 5S RNA. EMBO J. 6:453–460.
  • Crosby, S. D., J. J. Puetz, K. S. Simburger, T. J. Fahrner, and J. Milbrandt. 1991. The early response gene NGFI-C encodes a zinc finger transcriptional activator and is a member of the GCGGGGGCG (GSG) element-binding protein family. Mol. Cell. Biol. 11:3835–3841.
  • Engelke, D., S.-Y. Ng, B. Shastry, and R. Roeder. 1980. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19:717–728.
  • Honda, B., and R. Roeder. 1980. Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 22:119–126.
  • Hope, Ι. Α., and K. Struhl. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894.
  • Joho, K. Unpublished data.
  • Joho, Κ. Ε., Μ. Κ. Darby, Ε. Τ. Crawford, and D. D. Brown. 1990. A finger protein structurally similar to TFIIIA that binds exclusively to 5S RNA in Xenopus. Cell 61:293–300.
  • Kadonaga, J. T., K. R. Carner, F. R. Masiarz, and R. Tjian. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51:1079–1090.
  • Kim, S. Η., Μ. Κ. Darby, Κ. Ε. Joho, and D. D. Brown. 1990. The characterization of the TFIIIA synthesized in somatic cells of Xenopus laevis. Genes Dev. 4:1602–1610.
  • Kinzler, K. W., and B. Vogelstein. 1990. The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol. Cell. Biol. 10:634–642.
  • Köster, Μ., Τ. Pieler, A. Poting, and W. Knochel. 1988. The finger motif defines a multigene family represented in the maternal mRNA of Xenopus laevis oocytes. EMBO J. 7:1735–1741.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Miller, J., A. D. McLachlan, and A. Klug. 1985. Repetitive zinc-binding domains in the protein transcription factor ΠΙΑ from Xenopus oocytes. EMBO J. 4:1609–1614.
  • Morinaga, Y., T. Franceschini, S. Inouye, and M. Inouye. 1984. Improvement of oligonucleotide-directed site-specific mutagenesis using double stranded plasmid. Bio/Technology 2:636–639.
  • Pavletich, N. P., and C. O. Pabo. 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.lA. Science 252:809–817.
  • Pelham, H., and D. Brown. 1980. A specific transcription factor that can bind to either the 5S RNA gene or 5S RNA. Proc. Natl. Acad. Sci. USA 77:4170–4174.
  • Picard, B., M. le Maire, M. Wegnez, and H. Denis. 1980. Biochemical research on oogenesis. Composition of the 42S storage particles of Xenopus laevis oocytes. Eur. J. Biochem. 109:665–669.
  • Picard, B., and Μ. Wegnez. 1979. Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex. Proc. Natl. Acad. Sci. USA 76:241–245.
  • Romaniuk, P., and O. Uhlenbeck. 1983. Joining RNA molecules with RNA ligase. Methods Enzymol. 100:52–59.
  • Romaniuk, P. J. 1989. The role of highly conserved single-stranded nucleotides of Xenopus 5S RNA. Biochemistry 28:1388–1395.
  • Romaniuk, P. J., I. Leal de Stevenson, and Η. Η. Wong. 1987. Defining the binding site of Xenopus transcription factor ΠΙΑ on 5S RNA using truncated and chimeric 5S RNA molecules. Nucleic Acids Res. 15:2737–2755.
  • Sakonju, S., and D. D. Brown. 1982. Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31:395–405.
  • Sakonju, S., D. D. Brown, D. Engelke, S. Y. Ng, B. S. Shastry, and R. G. Roeder. 1981. The binding of a transcription factor to deletion mutants of a 5S ribosomal RNA gene. Cell 23:665–669.
  • Sands, M. S., and D. F. Bogenhagen. 1987. TFIIIA binds to different domains of 5S RNA and the Xenopus borealis 5S RNA gene. Mol. Cell. Biol. 7:3985–3993.
  • Sands, M. S., and D. F. Bogenhagen. 1991. The carboxyterminal zinc fingers of TFIIIA interact with the tip of helix V of 5S RNA in the 7S ribonucleoprotein particle. Nucleic Acids Res. 19:1791–1796.
  • Sands, M. S., and D. F. Bogenhagen. 1991. Two zinc finger proteins from Xenopus laevis bind the same region of 5S RNA but with different nuclease protection patterns. Nucleic Acids Res. 19:1797–1803.
  • Schägger, H., and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368–379.
  • Schuh, R., W. Aicher, U. Gaul, S. Côté, A. Preiss, D. Maier, E. Seifert, U. Nauber, C. Schröder, R. Kemler, and H. Jäckie. 1986. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell 47:1025–1032.
  • Smith, D. R., I. J. Jackson, and D. D. Brown. 1984. Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell 37:645–652.
  • Vrana, K. E., M. E. A. Churchill, T. D. Tullius, and D. D. Brown. 1988. Mapping functional regions of transcription factor TFIIIA. Mol. Cell. Biol. 8:1684–1696.
  • Wolffe, A. P., E. Jordan, and D. D. Brown. 1986. A bacteriophage RNA polymerase transcribes through a Xenopus 5S RNA gene transcription complex without disrupting it. Cell 44:381–389.
  • Yisraeli, J., and D. Melton. 1990. Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Methods Enzymol. 180:42–50.
  • You, Q. M., and P. J. Romaniuk. 1990. The effects of disrupting 5S RNA helical structures on the binding of Xenopus transcription factor IIIA. Nucleic Acids Res. 18:5055–5062.
  • You, Q. M., N. Veldhoen, F. Baudin, and P. J. Romaniuk. 1991. Mutations in 5S DNA and 5S RNA have different effects on the binding of Xenopus transcription factor IIIA. Biochemistry 30:2495–2500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.