17
Views
34
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Oct-1 and Oct-2 Potentiate Functional Interactions of a Transcription Factor with the Proximal Sequence Element of Small Nuclear RNA Genes

, , &
Pages 3247-3261 | Received 05 Mar 1992, Accepted 04 May 1992, Published online: 01 Apr 2023

References

  • Ares, Μ., Jr., Μ. Μangin, and A. M. Weiner. 1985. Orientation-dependent transcriptional activator upstream of a human U2 snRNA gene. Mol. Cell. Biol. 5:1560–1570.
  • Carbon, P., S. Murgo, J. P. Ebel, A. Krol, G. Tebb, and I. W. Mattaj. 1987. A common octamer motif binding protein is involved in the transcription of the U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell 51:71–79.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolated by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Comai, L., N. Tanese, and R. Tjian. 1992. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68:965–976.
  • Dahlberg, J. E., and E. Lund. 1988. The genes and transcription of the major small nuclear RNAs, p. 38–70. In M. L. Birnsteil (ed.), Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag KG, Berlin.
  • Das, G., D. Henning, D. Wright, and R. Reddy. 1988. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III. EMBO J. 7:503–512.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Dynlacht, B. D., T. Hoey, and R. Tjian. 1991. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:1–20.
  • Fletcher, C., N. Heintz, and R. G. Roeder. 1987. Purification and characterization of Oct-1, a transcription factor regulating cell cycle expression of a human histone H2b gene. Cell 51:773–781.
  • Gerster, T., C.-G. Balmeceda, and R. G. Roeder. 1990. The cell type-specific octamer transcription factor Oct-2 has two domains required for the activation of transcription. EMBO J. 9:1635–1643.
  • Gerster, T., and R. G. Roeder. 1988. A herpes virus trans-activating protein interacts with transcription factor Oct-1 and other cellular proteins. Proc. Natl. Acad. Sci. USA 85:6347–6351.
  • Gerster, T., and R. G. Roeder. Unpublished results.
  • Gunderson, S. I., M. W. Knuth, and R. R. Burgess. 1990. The human U1 snRNA promoter correctly initiates transcription in vitro and is activated by PSE1. Genes Dev. 4:2048–2060.
  • Herr, W., R. A. Sturm, R. G. Clerc, L. M. Corcoran, D. Baltimore, P. A. Sharp, H. A. Ingraham, M. G. Rosenfeld, M. Finney, G. Ruvken, and H. R. Horvitz. 1988. The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev. 2:1513–1516.
  • Hoffmann, Α., and R. G. Roeder. 1991. Purification of his-tagged proteins in non-denaturing conditions suggests a convenient method for protein interaction studies. Nucleic Acids Res. 19:6337–6338.
  • Howe, J. G., and M.-D. Shu. 1989. Epstein-Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 57:825–834.
  • Janson, L., and U. Peterson. 1990. Cooperative interaction between transcription factors Sp1 and OTF-1. Proc. Natl. Acad. Sci. USA 87:4732–4736.
  • Kleinert, H., R. Assert, and B.-J. Benecke. 1991. A single base pair deletion from the inactive octamer-like motif of the 7SK distal sequence element brings full functionality in vivo. J. Biol. Chem. 266:23872–23877.
  • Kleinert, H., S. Bredow, and B. J. Benecke. 1990. Expression of a human 7SK gene in vivo requires a novel pol III upstream element. EMBO J. 9:711–718.
  • Knuth, M. W., S. I. Gunderson, Μ. Ε. Thompson, L. A. Strasheim, and R. R. Burgess. 1990. Purification and characterization of proximal sequence element-binding protein 1, a transcription activating protein related to Ku and TREF that binds the proximal sequence element of the human Ul promoter. J. Biol. Chem. 265:17911–17920.
  • Kristie, T. M., and P. A. Sharp. 1990. Interactions of the Oct-1 POU subdomains with specific DNA sequences and with the HSV α-trans-activator protein. Genes Dev. 4:2383–2396.
  • Krol, Α., P. Carbon, J. P. Ebel, and B. Appel. 1987. Xenopus tropicalis U6 snRNA genes transcribed by pol III contain upstream elements used by pol II dependent U snRNA genes. Nucleic Acids Res. 15:2463–2478.
  • Kunkel, G. R. 1991. RNA polymerase III transcription of genes that lack internal control regions. Biochim. Biophys. Acta 1088:1–9.
  • Kunkel, G. R., and T. Pederson. 1988. Upstream elements required for efficient transcription of a human U6 gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev. 2:196–204.
  • Kunkel, T. A. 1985. Rapid and efficient site specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • La Bella, F., P. Gallinari, J. McKinney, and N. Heintz. 1989. Histone H1 subtype-specific consensus elements mediate cell cycle-regulated transcription in vitro. Genes Dev. 3:1982–1990.
  • La Bella, F., H. L. Sive, R. G. Roeder, and N. Heintz. 1988. Cell-cycle regulation of a human histone H2b gene is mediated by the H2b subtype-specific DNA consensus element. Genes Dev. 2:32–39.
  • LeBowitz, J. Η., Τ. Kobayashi, L. Staudt, D. Baltimore, and P. A. Sharp. 1988. Octamer-binding proteins from Β or HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro. Genes Dev. 2:1227–1237.
  • Lescure, Α., P. Cabon, and A. Krol. 1991. The different positioning of the proximal sequence element in the Xenopus RNA polymerase II and III snRNA promoters is a key determinant which confers RNA polymerase III specificity. Nucleic Acids Res. 19:435–441.
  • Lobo, S. M., and N. Hernandez. 1989. A 7bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter. Cell 58:55–67.
  • Lobo, S. M., J. Lister, M. L. Sullivan, and N. Hernandez. 1991. The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro. Genes Dev. 5:1477–1489.
  • Luo, Υ., Η. Fujii, and R. G. Roeder. Unpublished observations.
  • Margottin, F., G. Dujardin, M. Gerard, J.-M. Egly, J. Huet, and A. Sentenac. 1990. Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science 251:424–426.
  • Mattaj, I. W., N. A. Dathan, H. D. Parry, P. Carbon, and A. Krol. 1988. Changing the RNA polymerase specificity of U snRNA gene promoters. Cell 55:435–442.
  • Mattaj, I. W., S. Lienhard, J. Jiricny, and Ε. Μ. DeRobertis. 1985. An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes. Nature (London) 316:163–167.
  • McKnight, J. L. C., T. M. Kristie, and B. Roizman. 1987. The binding of the virion protein mediating a gene induction in herpes simplex virus 1 infected cells to its cis site requires cellular proteins. Proc. Natl. Acad. Sci. USA 84:7061–7065.
  • Meisterernst, M., and R. G. Roeder. 1991. A family of proteins which interact with TFHD and regulate promoter activity. Cell 67:557–567.
  • Meisterernst, M., A. L. Roy, Η. Μ. Lieu, and R. G. Roeder. 1991. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66:1–20.
  • Muller, Μ. Μ., S. Ruppert, W. Schaffher, and P. Matthias. 1988. A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature (London) 336:544–551.
  • Muller-Immergluck, Μ. Μ., W. Schaffner, and P. Matthias. 1990. Transcription factor oct-2A contains functionally redundant activating domains and works selectively from a promoter but not from a remote enhancer position in non-lymphoid (HeLa) cells. EMBO J. 9:1625–1634.
  • Murphy, S., C. DiLiegro, and M. Melli. 1987. The in vitro transcription of the 7SK gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell 51:81–87.
  • Murphy, S., T. Gerster, and R. G. Roeder. Unpublished observations.
  • Murphy, S., A. Hoffman, and R. G. Roeder. Unpublished observations.
  • Murphy, S., Y. Luo, T. Gerster, and R. G. Roeder. Unpublished observations.
  • Murphy, S., B. Moorefield, and T. Pieler. 1989. Common mechanisms of promoter recognition by RNA polymerases II and III. Trends Genet. 5:122–126.
  • Murphy, S., A. Pierani, C. Scheidereit, M. Melli, and R. G. Roeder. 1989. Purified octamer binding transcription factors stimulate RNA polymerase Ill-mediated transcription of the 7SK gene. Cell 59:1071–1080.
  • Nakajima, N., M. Horikoshi, and R. G. Roeder. 1988. Factors involved in specific transcription by mammalian RNA polymerase II: purification, genetic specificity, and TATA box-promoter interactions of TFIID. Mol. Cell. Biol. 8:4028–4040.
  • O’Hare, P., and C. R. Goding. 1988. Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virus transactivation. Cell 52:435–445.
  • Palmer, J. M., and W. R. Folk. 1990. Unravelling the complexities of transcription by RNA polymerase III. Trends Biochem. 15:300–304.
  • Parry, H. D., D. Scherly, and I. W. Mattaj. 1989. Snurpogenesis: the transcription and assembly of U snRNA components. Trends Biochem. 14:15–18.
  • Pierani, Α., A. Heguy, H. Fujii, and R. G. Roeder. 1990. Activation of octamer-containing promoters by either octamer-binding transcription factor 1 (Oct-1) or Oct-2 and requirement of an additional B-cell-specific component for optimal transcription of immunoglobulin promoters. Mol. Cell. Biol. 10:6204–6215.
  • Reddy, R., and R. Singh. 1991. Synthesis of small nuclear RNAs. Prog. Mol. Subcell. Biol. 12:1.
  • Reeves, W. H., and Ζ. Μ. Sthoeger. 1989. Molecular cloning of cDNA encoding the p70 (Ku) lupus autoantigen. J. Biol. Chem. 264:5047–5052.
  • Richmond, T. J., J. T. Finch, B. Rushton, D. Rhodes, and A. Klug. 1984. Structure of the nucleosome core particle of 7A resolution. Nature (London) 311:532–537.
  • Roberts, S. Β., Ν. Segil, and N. Heintz. 1991. Differential phosphorylation of the transcription factor Octl during the cell cycle. Science 253:1022–1026.
  • Rosenfeld, M. G. 1991. POU-domain transcription factors: pouer-ful developmental regulators. Genes Dev. 5:897–907.
  • Sadowski, I., J. Ma, S. Treyenberg, and M. Ptashne. 1988. Gal4-VP16 is an unusually potent transcriptional activator. Nature (London) 335:563–564.
  • Scheidereit, C., J. A. Cromlish, T. Gerster, K. Kawakami, C.-G. Balmeceda, R. A. Currie, and R. G. Roeder. 1988. A human lymphoid-specific transcription factor that activates immunoglobulin genes is a homeobox protein. Nature (London) 336:551–557.
  • Scheidereit, C., A. Heguy, and R. G. Roeder. 1987. Identification and purification of a human lymphoid-specific octamer binding protein (Oct-2) that activates transcription of an immunoglobulin promoter in vitro. Cell 51:783–793.
  • Schreiber, E., P. Matthias, M. M. Muller, and W. Schaffner. 1988. Identification of a novel lymphoid-specific octamer-binding protein (Oct-2B) by proteolytic clipping bandshift assay (PCBA). EMBO J. 7:4221–4229.
  • Sharp, P. A. 1992. TATA-binding protein is a classless factor. Cell 68:819–821.
  • Simmen, Κ. Α., J. Bernues, H. D. Parry, H. G. Stunenberg, A. Berkenstam, B. Cavallini, J.-M. Egly, and I. W. Mattaj. 1991. TFIID is required for in vitro transcription of the human U6 gene by RNA polymerase III. EMBO J. 10:1853–1862.
  • Skuzeski, J. M., E. Lund, J. T. Murphy, Τ. Η. Steinberg, R. R. Burgess, and J. E. Dahlberg. 1987. Synthesis of human U1 RNA II: identification of two regions of the promoter essential for transcription initiation at position +1. J. Biol. Chem. 259:8345–8352.
  • Smale, S. T., M. C. Schmidt, A. J. Berk, and D. Baltimore. 1990. Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc. Natl. Acad. Sci. USA 87:4509–4513.
  • Sollner-Webb, B. 1988. Surprises in polymerase III transcription. Cell 52:153–154.
  • Staudt, L. M., R. G. Clerc, H. Singh, J. H. LeBowitz, P. A. Sharp, and D. Baltimore. 1988. Cloning of a lymphoid-specific cDNA encoding a protein binding the regulatory octamer DNA motif. Science 241:577–580.
  • Stern, S., M. Tanaka, and W. Herr. 1989. The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature (London) 341:624–630.
  • Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185:60–89.
  • Sturm, R. Α., G. Das, and W. Herr. 1988. The ubiquitous octamer-binding protein oct-1 contains a POU domain with a homeo box subdomain. Genes Dev. 2:1582–1599.
  • Tanaka, M., and W. Herr. 1990. Differential transcriptional activation by oct-1 and oct-2: interdependent activation domains induce oct-2 phosphorylation. Cell 60:375–386.
  • Tanaka, M., J.-S. Lai, and W. Herr. 1992. Promoter-selective domains in Oct-1 and Oct-2 direct differential activation of an snRNA promoter. Cell 68:755–767.
  • Waldschmidt, R., I. Wanandi, and Κ. Η. Seifart. 1991. Identification of transcription factors required for the expression of mammalian U6 genes in vitro. EMBO J. 10:2595–2603.
  • White, R., S. P. Jackson, and P. W. Rigby. 1992. A role for the TATA-box-binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor. Proc. Natl. Acad. Sci. USA 89:1949–1953.
  • Yang, J., M. M. Muller-Immergluck, K. Seipel, L. Janson, G. Westin, W. Schaffner, and U. Petterson. 1991. Both Oct-1 and Oct-2A contain domains which can activate the ubiquitously expressed U2 snRNA genes. EMBO J. 10:2291–2296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.