4
Views
2
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Murine Helix-Loop-Helix Transcriptional Activator Proteins Binding to the E-Box Motif of the Akv Murine Leukemia Virus Enhancer Identified by cDNA Cloning

, , &
Pages 3449-3459 | Received 09 Jan 1992, Accepted 26 May 1992, Published online: 01 Apr 2023

REFERENCES

  • Alonso, M. C., and C. V. Cabrera. 1988. The achaete-scute gene complex of Drosophila melanogaster comprises four homologous genes. EMBO J. 7:2585–2591.
  • Beckmann, H., L. K. Su, and T. Kadesch. 1990. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev. 4:167–179.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helixloop-helix DNA binding proteins. Cell 61:49–59.
  • Bohmann, D., and R. Tjian. 1989. Biochemical analysis of transcriptional activation by Jun: differential activity of c- and v-Jun. Cell 59:709–717.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701–709.
  • Cabrera, C. V., and M. C. Alonso. 1991. Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO J. 10:2965–2978.
  • Celander, D., and W. A. Haseltine. 1984. Tissue-specific transcription preference as a determinant of cell tropism and leu- kaemogenic potential of murine retroviruses. Nature (London) 312:159–162.
  • Celander, D., and W. A. Haseltine. 1987. Glucocorticoid regulation of murine leukemia virus transcription elements is specified by determinants within the viral enhancer region. J. Virol. 61:269–275.
  • Celander, D., B. L. Hsu, and W. A. Haseltine. 1988. Regulatory elements within the murine leukemia virus enhancer regions mediate glucocorticoid responsiveness. J. Virol. 62:1314–1322.
  • Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299.
  • Christy, B. A., L. K. Sanders, L. F. Lau, N. G. Copeland, N. A. Jenkins, and D. Nathans. 1991. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene. Proc. Natl. Acad. Sci. USA 88:1815–1819.
  • Church, G. M., A. Ephrussi, W. Gilbert, and S. Tonegawa. 1985. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature (London) 313:798–801.
  • Cronmiller, C., P. Schedl, and T. W. Cline. 1988. Molecular characterization of daughterless, a Drosophila sex determination gene with multiple roles in development. Genes Dev. 2:1666–1676.
  • Lavis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • DeFranco, D., and K. R. Yamamoto. 1986. Two different factors act separately or together to specify functionally distinct activities at a single transcriptional enhancer. Mol. Cell. Biol. 6:993–1001.
  • Ellis, H. M., D. R. Spann, and J. W. Posakony. 1990. Extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. Cell 61:27–38.
  • Ellis, L., E. Clauser, D. O. Morgan, M. Edery, R. A. Roth, and W. J. Rutter. 1986. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose. Cell 45:721–732.
  • Ephrussi, A., G. M. Church, S. Tonegawa, and W. Gilbert. 1985. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science 227:134–140.
  • Eschenfeldt, W. H., and S. L. Berger. 1987. Purification of large double-stranded cDNA fragments. Methods Enzymol. 152:335–337.
  • Garrell, J., and J. Modolell. 1990. The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes a helix-loop-helix protein. Cell 61:39–48.
  • Golemis, E. A., N. A. Speck, and N. Hopkins. 1990. Alignment of U3 region sequences of mammalian type C viruses: identification of highly conserved motifs and implications for enhancer design. J. Virol. 64:534–542.
  • Gubler, U. 1987. Second-strand cDNA synthesis: mRNA fragments as primers. Methods Enzymol. 152:330–335.
  • Hall, C. V., P. E. Jacob, G. M. Ringold, and F. Lee. 1983. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2:101–109.
  • Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580.
  • Henthorn, P., M. Kiledjian, and T. Kadesch. 1990. Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science 247:467–470.
  • Hogan, B., F. Costantini, and E. Lacy. 1986. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hu, J.-S., E. N. Olson, and R. E. Kingston. 1992. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol. Cell. Biol. 12:1031–1042.
  • Javaux, F., A. Donda, G. Vassart, and D. Christophe. 1991. Cloning and sequence analysis of TFE, a helix-loop-helix transcription factor able to recognize the thyroglobulin gene promoter in vitro. Nucleic Acids Res. 19:1121–1127.
  • Kalderon, D., B. L. Roberts, W. D. Richardson, and A. E. Smith. 1984. A short amino acid sequence able to specify nuclear location. Cell 39:499–509.
  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229–241.
  • Krug, M. S., and S. L. Berger. 1987. First-strand cDNA synthesis primed with oligo(dT). Methods Enzymol. 152:316–325.
  • Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764.
  • Lenardo, M., J. W. Pierce, and D. Baltimore. 1987. Proteinbinding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science 236:1573–1577.
  • Lillie, J. W., and M. R. Green. 1989. Transcription activation by the adenovirus Ela protein. Nature (London) 338:39–44.
  • Lin, H., K. E. Yutzey, and S. F. Konieczny. 1991. Musclespecific expression of the troponin I gene requires interactions between helix-loop-helix muscle regulatory factors and ubiquitous transcription factors. Mol. Cell. Biol. 11:267–280.
  • Lovmand, S., N. O. Kjeldgaard, P. Jorgensen, and F. S. Pedersen. 1990. Enhancer functions in U3 of Akv virus: a role for cooperativity of a tandem repeat unit and its flanking DNA sequences. J. Virol. 64:3185–3191.
  • Lowy, D. R., E. Rands, S. K. Chattopadhyay, C. F. Garon, and G. L. Hager. 1980. Molecular cloning of infectious integrated murine leukemia virus DNA from infected mouse cells. Proc. Natl. Acad. Sci. USA 77:614–618.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marth, J. D., R. W. Overell, K. E. Meier, E. G. Krebs, and R. M. Perlmutter. 1988. Translational activation of the lck proto-oncogene. Nature (London) 332:171–173.
  • McGrath, M. S., E. Pillemer, D. Kooistra, and I. L. Weissman. 1980. The role of MuLV receptors on T-lymphoma cells in lymphoma cell proliferation. Contemp. Top. Immunobiol. 11:157–184.
  • McKeon, F. D., M. W. Kirschner, and D. Caput. 1986. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature (London) 319:463–468.
  • Mermod, N., E. A. O’Neill, T. J. Kelly, and R. Tjian. 1989. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58:741–753.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar et al. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Murre, C., A. Voronova, and D. Baltimore. 1991. B-cell- and myocyte-specific E2-box-binding factors contain E12/E47-like subunits. Mol. Cell. Biol. 11:1156–1160.
  • Nakabeppu, Y., and D. Nathans. 1991. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 64:751–759.
  • Nelson, C., L. P. Shen, A. Meister, E. Fodor, and W. J. Rutter. 1990. Pan: a transcriptional regulator that binds chymotrypsin, insulin, and AP-4 enhancer motifs. Genes Dev. 4:1035–1043.
  • Nurmberger, M., I. Dürr, W. Kues, M. Koenen, and V. Witzemann. 1991. Different mechanisms regulate muscle-specific AChR gamma- and epsilon-subunit gene expression. EMBO J. 10:2957–2964.
  • Piette, J., J. L. Bessereau, M. Huchet, and J. P. Changeux. 1990. Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor alpha-subunit gene. Nature (London) 345:353–355.
  • Pongubala, J. M., and M. L. Atchison. 1991. Functional characterization of the developmentally controlled immunoglobulin kappa 3′ enhancer: regulation by Id, a repressor of helix-loop- helix transcription factors. Mol. Cell. Biol. 11:1040–1047.
  • Prendergast, G. C., and E. B. Ziff. 1989. DNA-binding motif. Nature (London) 341:392. (Letter.)
  • Rhodes, S. J., and S. F. Konieczny. 1989. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3:2050–2061.
  • Rogers, S., R. Wells, and M. Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Santoro, C., N. Mermod, P. C. Andrews, and R. Tjian. 1988. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature (London) 334:218–224.
  • Singh, H., J. H. LeBowitz, A. S. J. Baldwin, and P. A. Sharp. 1988. Molecular cloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA. Cell 52:415–423.
  • Speck, N. A., and D. Baltimore. 1987. Six distinct nuclear factors interact with the 75-base-pair repeat of the Moloney murine leukemia virus enhancer. Mol. Cell. Biol. 7:1101–1110.
  • Speck, N. A., B. Renjifo, and N. Hopkins. 1990. Point mutations in the Moloney murine leukemia virus enhancer identify a lymphoid-specific viral core motif and 1,3-phorbol myristate acetate-inducible element. J. Virol. 64:543–550.
  • Studier, F. W., and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:113–130.
  • Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185:60–89.
  • Sun, X. H., and D. Baltimore. 1991. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64:459–470.
  • Tautz, D., R. Lehmann, H. Schnûrch, R. Schuh, E. Seifert, A. Kienlin, K. Jones, and H. Jackie. 1987. Finger protein, a novel structure encoded by hunchback, a second member of the gap class Drosophila segmentation genes. Nature (London) 327:383–389.
  • Taylor, J. W., J. Ott, and F. Eckstein. 1985. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 13:8765–8785.
  • Van Beveren, C., J. Coffin, and S. Hughes. 1985. Appendix B, p. 567–1148. In R. Weiss, N. Teich, H. Varmus, and J. Coffin (ed.), RNA tumor viruses, molecular biology of tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Villares, R., and C. V. Cabrera. 1987. The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50:415–424.
  • Vinson, C. R., K. L. LaMarco, P. F. Johnson, W. H. Landschulz, and S. L. McKnight. 1988. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 2:801–806.
  • Voronova, A., and D. Baltimore. 1990. Mutations that disrupt DNA binding and dimer formation in the E47 helix-loop-helix protein map to distinct domains. Proc. Natl. Acad. Sci. USA 87:4722–4726.
  • Walker, M. D., C. W. Park, A. Rosen, and A. Aronheim. 1990. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res. 18:1159–1166.
  • Wood, W. B. 1966. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J. Mol. Biol. 16:118–133.
  • Wright, W. E., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617.
  • Yamamoto, K. K., G. A. Gonzalez, W. H. Biggs, and M. R. Montminy. 1988. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature (London) 334:494–498.
  • Yamamoto, K. K., G. A. Gonzalez, P. Menzel, J. Rivier, and M. R. Montminy. 1990. Characterization of a bipartite activator domain in transcription factor CREB. Cell 60:611–617.
  • Young, R. A., and R. W. Davis. 1983. Yeast RNA polymerase II genes: isolation with antibody probes. Science 222:778–782.
  • Zhang, Y., J. Babin, A. L. Feldhaus, H. Singh, P. A. Sharp, and M. Bina. 1991. HTF4: a new human helix-loop-helix protein. Nucleic Acids Res. 19:4555.
  • Zheng, X. M., D. Black, P. Chambon, and J. M. Egly. 1990. Sequencing and expression of complementary DNA for the general transcription factor BTF3. Nature (London) 344:556–559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.