7
Views
12
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Ras Activation by Insulin and Epidermal Growth Factor through Enhanced Exchange of Guanine Nucleotides on p21ras

, , , &
Pages 155-162 | Received 21 Aug 1992, Accepted 21 Sep 1992, Published online: 01 Apr 2023

REFERENCES

  • Ballester, R., D. Marchuk, Μ. Boguski, A. Saulino, R. Letcher, Μ. Wigler, and F. Collins. 1990. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851–859.
  • Barbacid, Μ. 1987. ras genes. Annu. Rev. Biochem. 56:779–827.
  • Basu, T. N., D. H. Gutmann, J. A. Fletcher, T. W. Glover, F. S. Collins, and J. Downward. 1992. Aberrant regulation of ras proteins in malignant tumor cells from type 1 neurofibromatosis patients. Nature (London) 356:713–715.
  • Bollag, G., and F. McCormick. 1991. Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature (London) 351:576–579.
  • Bollag, G., and F. McCormick. 1992. Personal communication.
  • Bonfini, L., C. A. Karlovich, C. Dasgupta, and U. Baneijee. 1992. The Son of sevenless gene product: a putative activator of Ras. Science 255:603–606.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature (London) 348:125–132.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: conserved structure and molecular mechanism. Nature (London) 349:117–127.
  • Broek, D., T. Toda, T. Michaeli, L. Levin, C. Birchmeier, Μ. Zoller, S. Powers, and Μ. Wigler. 1987. The 5. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799.
  • Buller, R. Μ. L., S. Chakrabarti, J. A. Cooper, D. R. Twardzik, and B. Moss. 1988. Deletion of the vaccinia virus growth factor gene reduces virus virulence. J. Virol. 62:866–874.
  • Burgering, B. Μ. T., and J. L. Bos. 1992. Unpublished observations.
  • Burgering, B. Μ. T., R. H. Medema, J. A. Maassen, Μ. L. van de Wetering, A. J. van der Eb, F. McCormick, and J. L. Bos. 1991. Insulin stimulation of gene expression mediated by p21ras activation. EMBO J. 10:1103–1109.
  • Burgering, B. Μ. T., A. J. Snijders, J. A. Maassen, A. J. van der Eb, and J. L. Bos. 1989. Possible involvement of normal p21 H-ras in the insulin/insulinlike growth factor 1 signal transduction pathway. Mol. Cell. Biol. 9:4312–4322.
  • Cai, H., J. Szeberényi, and G. Μ. Cooper. 1990. Effect of a dominant inhibitory Ha-ras mutation on mitogenic signal transduction in NIH 3T3 cells. Mol. Cell. Biol. 10:5314–5323.
  • Créchet, J.-B., P. Poullet, M.-Y. Mistou, A. Parmeggiani, J. Camonis, E. Boy-Marcotte, F. Damak, and Μ. Jacquet. 1990. Enhancement of the GDP-GTP exchange of RAS proteins by the carboxyl-terminal domain of SCD25. Science 248:866–868.
  • de Vries-Smits, A. Μ. M., B. Μ. T Burgering, S. J. Leevers, C. J. Marshall, and J. L. Bos. 1992. Involvement of p21ras in activation of extracellular signal-regulated kinase 2. Nature (London) 357:602–604.
  • Downward, J., J. De Gunzburg, R. Riehl, and R. A. Weinberg. 1988. p21ras-induced responsiveness of phosphatidylinositol turnover to bradykinin is a receptor number effect. Proc. Natl. Acad. Sci. USA 85:5774–5778.
  • Downward, J., J. D. Graves, P. H. Warne, S. Rayter, and D. A. Cantrell. 1990. Stimulation of p21ras upon T-cell activation. Nature (London) 346:719–723.
  • Downward, J., R. Riehl, L. Wu, and R. A. Weinberg. 1990. Identification of a nucleotide exchange-promoting activity for p21ras. Proc. Natl. Acad. Sci. USA 87:5998–6002.
  • Feig, L. A., and G. Μ. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8:3235–3243.
  • Feramisco, J. R., Μ. Gross, T. Kamata, Μ. Rosenberg, and R. W. Sweet. 1984. Microinjection of the oncogenic form of the human H-ras (T24) protein results in rapid proliferation of quiescent cells. Cell 38:109–117.
  • Gaul, U., G. Mardon, and G. Μ. Rubin. 1992. A putative ras GTPase activating protein acts as a negative regulator of signaling by the sevenless receptor tyrosine kinase. Cell 68:1007–1019.
  • Gibbs, J. B., Μ. S. Marshall, E. Μ. Scolnick, R. A. F Dixon, and U. S. Vogel. 1990. Modulation of guanine nucleotides bound to ras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). J. Biol. Chem. 265:20437–20442.
  • Gutierrez, L., A. I. Magee, C. J. Marshall, and J∙ F. Hancock. 1989. Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J. 8:1093–1098.
  • Hall, A. 1990. The cellular functions of small GTP-binding proteins. Science 249:635–640.
  • Janknecht, R., G. de Martynoff, J. Lou, R. A. Hipskind, A. Nordheim, and H. G. Stunnenberg. 1991. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc. Natl. Acad. Sci. USA 88:8972–8976.
  • Kamata, T., and J. R. Feramisco. 1984. Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins. Nature (London) 310:147–150.
  • Kazlauskas, A., C. Ellis, T. Pawson, and J. A. Cooper. 1990. Binding of GAP to activated PDGF receptors. Science 247:1578–1581.
  • Leevers, S. J., and C. J∙ Marshall. 1992. Activation of extracellular signal-regulated kinase, ERK2, by p21ras oncoprotein. EMBO J. 11:569–574.
  • Li, B.-Q., D. Kaplan, H.-F. Kung, and T. Kamata. 1992. Nerve growth factor stimulation of the Ras-guanine nucleotide exchange factor and GAP activities. Science 256:1456–1459.
  • Margolis, B., N. Li, A. Koch, Μ. Mohammadi, D. R. Hurwitz, A. Zilberstein, A. Ullrich, T. Pawson, and J. Sehlessinger. 1990. The tyrosine phosphorylated Carboxyterminus of the EGF receptor is a binding site for GAP and PLC-γ. EMBO J. 9:4375–4380.
  • Martegani, E., M. Vanoni, R. Zippel, P. Coccetti, R. Brambilla, C. Ferrari, E. Sturani, and L. Alberghine. 1992. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J. 11:2151–2157.
  • Martin, G. A., D. Viskochil, G. BoUag, P. C. McCabe, W. J. Crosier, H. Haubruck, L. Conroy, R. Clark, P. O’Connell, R. Μ. Cawthon, Μ. A. Innes, and F. McCormick. 1990. The GAP- related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849.
  • McCormick, F. 1989. ras GTPase activating protein: signal transmitter and signal terminator. Cell 56:5–8.
  • Medema, R. H., R. Wubbolts, and J. L. Bos. 1991. Two dominant inhibitory mutants of p2Γβi interfere with insulin- induced gene expression. Mol. Cell. Biol. 11:5963–5967.
  • Moran, Μ. F., P. Polakis, F. McCormick, T. Pawson, and C. Ellis. 1991. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol. Cell. Biol. 11:1804–1812.
  • Mulcahy, L. S., Μ. R. Smith, and D. W. Stacey. 1985. Requirements for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature (London) 313:241–243.
  • Osterop, A. P. R. Μ., R. H. Medema, G. C. Μ. van der Zon, J. L. Bos, W. Möller, and J. A. Maassen. Epidermal growth factor receptors generate Ras. GTP more efficiently than insulin receptors, submitted for publication.
  • Pronk, G. J., R. H. Medema, B. Μ. T Burgering, R. Clark, F. McCormick, and J. L. Bos. Interaction between the p21ras GTPase activating protein and the insulin receptor. J. Biol. Chem., in press.
  • Satoh, T., Μ. Endo, M. Nakafuku, T. Akiyama, T. Yamamoto, and Y. Kaziro. 1990. Accumulation of p21ras. GTP in response to stimulation with epidermal growth factor and oncogene products with tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 87:7926–7929.
  • Satoh, T., M. Endo, Μ. Nakafiiku, S. Nakamura, and Y. Kaziro. 1990. Platelet-derived growth factor stimulates formation of active p21ras-GTP complex in Swiss mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 87:5993–5997.
  • Shou, C., C. L. Farnsworth, B. G. Neel, and L. A. Feig. 1992. Molecular cloning of cDNAs encoding a guanine-releasing factor for ras p21. Nature (London) 358:351–354.
  • Stacey, D. W., and H.-F. Kung. 1984. Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature (London) 310:508–511.
  • Stacey, D. W., T. Watson, H.-F. Kung, and T∙ Curran. 1987. Microinjection of transforming ras protein induces c-fos expression. Mol. Cell. Biol. 7:523–527.
  • Szeberényi, J., H. Cai, and G. Μ. Cooper. 1990. Effect of a dominant inhibitoιy Ha-ras mutation on neuronal differentiation of PC12 cells. Mol. Cell. Biol. 10:5324–5332.
  • Tanaka, K., Μ. Nakafuku, T. Satoh, Μ. S. Marshall, J. B. Gibbs, K. Matsumoto, Y. Kaziro, and A. Toh-e. 1990. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803–807.
  • Thomas, S. Μ., Μ. DeMarco, G. D’Arcangelo, S. Halegoua, and J. S. Brugge. 1992. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68:1031–1040.
  • Trahey, M., and F. McCormick. 1987. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545.
  • West, Μ., H. Kung, and T. Kamata. 1990. A novel membrane factor stimulates guanine nucleotide exchange reaction of ras proteins. FEBS Lett. 259:245–248.
  • Wolfman, A., and I. G. Macara. 1990. A cytosolic protein catalyzes the release of GDP from p21ras. Science 248:67–69.
  • Wood, K. W., C. Sarnecki, T. Μ. Roberts, and J. Blenis. 1992. ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-I and RSK. Cell 68:1041–1050.
  • Xu, G., P. O’Connell, D. Viskochil, R. Cawthon, Μ. Robertson, Μ. Culver, D. Dunn, J. Stevens, R. Gesteland, R. White, and R. Weiss. 1990. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608.
  • Zhang, K., A. G. Papageorge, and D. R. Lowy. 1992. Mechanistic aspects of signaling through ras in NIH 3T3 cells. Science 257:671–674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.