13
Views
20
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Identification of cis and trans Components of a Novel Heat Shock Stress Regulatory Pathway in Saccharomyces cerevisiae

&
Pages 248-256 | Received 23 Jun 1992, Accepted 17 Sep 1992, Published online: 01 Apr 2023

REFERENCES

  • Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761–3769.
  • Clos, J., J. T. Westwood, P. B. Becker, S. Wilson, K. Lambert, and C. Wu. 1990. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097.
  • Erickson, J. W., and L. A. Gross. 1989. Identification of the σE subunit of Escherichia coli polymerase: a second alternate σ factor involved in high-temperature gene expression. Genes Dev. 3:1462–1471.
  • Goldenberg, C. J., Y. Luo, Μ. Fenna, R. Baler, R. Weinmann, and R. Voellmy. 1988. Purified human factor activates heat shock promoter in a HeLa cell-free transcription system. J. Biol. Chem. 263:19734–19739.
  • Kadonaga, J. T., and R. Tjian. 1986. Affinity purification of sequence specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 83:5889–5893.
  • Kobayashi, N., and K. McEntee. 1990. Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87:6550–6554.
  • Krueger, J. H., and G. C. Walker. 1984. GroEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Proc. Natl. Acad. Sci. USA 81:1499–1503.
  • Lue, N. F., and R. D. Kornberg. 1987. Accurate initiation at RNA polymerase II promoters in extracts from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 84:8839–8843.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McClanahan, T., and K. McEntee. 1982. DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:90–96.
  • Neidhardt, F. C., and R. A. Van Bogelen. 1987. Heat shock response, p. 1334–1345. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, Μ. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
  • Nguyen, R., J. Simon, and K. McEntee. Unpublished data.
  • Ota, I. Μ., and A. Varshavsky. 1992. A gene encoding a putative tyrosine phosphatase suppresses lethality of an N-end rule-dependent mutant. Proc. Natl. Acad. Sci. USA 89:2355–2359.
  • Park, H.-O., and E. A. Craig. 1989. Positive and negative regulation of basal expression of a yeast HSP70 gene. Mol. Cell. Biol. 9:2025–2033.
  • Pelham, H. R. B. 1982. A regulatory upstream promoter element in the Drosophila hsp70 heat shock gene. Cell 30:517–528.
  • Perisic, O., H. Xiao, and J. T. Lis. 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59:797–806.
  • Prackett, U. Μ., and P. A. Meacock. 1990. HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol. Gen. Genet. 223:97–106.
  • Rabindran, S. K., G. Gioigi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock factor, HSFl. Proc. Natl. Acad. Sci. USA 88:6906–6910.
  • Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5:1902–1911.
  • Scharf, K.-D., S. Rose, W. Zoh, F. Schoff, and L. Nover. 1990. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J. 9:4495–4501.
  • Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88:6911–6915.
  • Simon, J., and K. McEntee. Unpublished data.
  • Sorger, P., Μ. Lewis, and H. R. B. Pelham. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature (London) 329:81–84.
  • Sorger, P., and H. R. B. Pelham. 1987. Purification and characterization of a heat shock element binding protein from yeast. EMBO J. 6:3035–3041.
  • Sorger, P., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA binding protein that exhibits temperaturedependent phosphorylation. Cell 39:855–864.
  • Vinson, C. R., K. L. LaMarco, P. F. Johnson, W. H. Landschulz, and S. L. McKnight. 1988. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 2:801–806.
  • Wang, Q., and J. Kaguni. 1989. A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J. Bacteriol. 171:4248–4253.
  • Weiderrecht, G., D. Seto, and C. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853.
  • Weiderrecht, G., D. Shuey, W. Kibbe, and C. Parker. 1987. The Saccharomyces and Drosophila heat shock transcription factors are identical in size and DNA binding properties. Cell 48:507–515.
  • Wieser, R., G. Adam, A. Wagner, C. Schuller, G. Marchler, H. Ruis, Z. Krawiec, and T. Bilinski. 1991. Heat shock factorindependent heat control of transcription of the CTTl gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J. Biol. Chem. 266:12406–12411.
  • Wu, C. 1984. Two protein-binding sites in chromatin implicated in the activation of heat-shock genes. Nature (London) 309:229–234.
  • Wu, C., S. Wilson, B. Walker, I. Dawid, T. Paisley, V. Zimarino, and H. Ueda. 1987. Purification and properties of Drosophila heat shock activator protein. Science 238:1247–1253.
  • Xiao, H., and J. Lis. 1988. Germline transformation used to define key features of heat shock response elements. Science 239:1139–1142.
  • Zimarino, V., and C. Wu. 1987. Induction of sequence-specific binding of heat shock activator protein without protein synthesis. Nature (London) 327:727–730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.