16
Views
22
CrossRef citations to date
0
Altmetric
Gene Expression

Characterization of HIR1 and HIR2, Two Genes Required for Regulation of Histone Gene Transcription in Saccharomyces cerevisiae

, &
Pages 28-38 | Received 20 Apr 1992, Accepted 29 Sep 1992, Published online: 01 Apr 2023

REFERENCES

  • Ausubel, F. Μ., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Strahl (ed.). 1989. Current protocols in molecular biology. John Wiley & Sons, Inc., New York.
  • Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1523.
  • Chaleff, D. T., and G. R. Fink. 1980. Genetic events associated with an insertion mutation in yeast. Cell 21:227–237.
  • Clark-Adams, C. D., and F. Winston. 1987. The SPT6 gene is essential for growth and is required for δ-mediated transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:679–686.
  • Cross, S. L., and Μ. Μ. Smith. 1988. Comparison of the structure and cell cycle expression of mRNAs encoded by two histone H3-H4 loci in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:945–954.
  • Dalrymple, Μ. A., S. Peterson-Bjora, J. D. Friesen, and J. D. Beggs. 1989. The product of the PRP4 gene of S. cerevisiae shows homology to β subunits of G proteins. Cell 58:811–812.
  • Dingwall, C., and R. A. Laskey. 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–481.
  • Farabaugh, P. J., and G. R. Fink. 1980. Insertion of the eukaryotic transposable element Ty1 creates a 5-base pair duplication. Nature (London) 286:352–356.
  • Fassler, J. S., and F. Winston. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:203–212.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Fong, H. K. W., J. B. Hurley, R. S. Hopkins, R. Miake-Lye, Μ. S. Johnson, R. F. Doolittle, and Μ. I. Simon. 1986. Repetitive segmental structure of the transducin β subunit: homology with the CDC4 gene and identification of related mRNAs. Proc. Natl. Acad. Sci. USA 83:2162–2166.
  • Goebl, Μ. Personal communication.
  • Goebl, M., and Μ. Yanagida. 1991. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Genet. 7:173–177.
  • Hartley, D. A., A. Preiss, and S. Artavanis-Tsakonas. 1988. A deduced gene product from the Drosophila neurogenic locus, Enhancer of split, shows homology to mammalian G-protein β subunit. Cell 55:785–795.
  • Hereford, L. Μ., S. Bromley, and Μ. A. Osley. 1982. Periodic transcription of yeast histone genes. Cell 30:305–310.
  • Hereford, L. Μ., K. Fahraer, J. Woolford, Jr., Μ. Rosbash, and D. B. Kaback. 1979. Isolation of yeast histone genes H2A and H2B. Cell 18:1261–1271.
  • Hereford, L. Μ., Μ. A. Osley, J. R. Ludwig II, and C. S. McLaughlin. 1981. Cell cycle regulation of yeast histone mRNA. Cell 24:367–375.
  • Icho, T., and R. B. Wickner. 1988. The MAKll protein is essential for cell growth and replication of M double stranded RNA and is apparently a membrane associated protein. J. Biol. Chem. 263:1467–1475.
  • Ito, H., Y. Fukuda, K. Marata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Keleher, C. A., Μ. J. Redd, J. Schultz, Μ. Carlson, and A. D. Johnson. 1991. Ssn6-Tupl is a general repressor of transcription in yeast. Cell 68:709–719.
  • Lycan, D. E., Μ. A. Osley, and L. Μ. Hereford. 1987. Role of transcriptional and posttranscriptional regulation in expression of histone genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:614–621.
  • Moran, L., D. Norris, and Μ. A. Osley. 1990. A yeast H2A-H2B promoter can be regulated by changes in histone gene copy number. Genes Dev. 4:752–763.
  • Moran, L., and P. Sherwood. Unpublished data.
  • Neigeborn, L., and Μ. Carlson. 1987. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115:247–253.
  • Oechsner, U., V. Magdolen, C. Zoglowek, U. Hacker, and W. Bandlow. 1988. Yeast adenylate kinase is transcribed constitutively from a promoter in the short intergenic region to the H2A-1 gene. FEBS Lett. 242:187–193.
  • Osley, Μ. A., J. Gould, S. Kim, Μ. Kane, and L. Μ. Hereford. 1986. Identification of sequences in a yeast histone promoter involved in periodic transcription. Cell 45:537–544.
  • Osley, Μ. A., and D. E. Lycan. 1987. trans-acting mutations that alter transcription of Saccharomyces cerevisiae histone genes. Mol. Cell. Biol. 7:4202–4210.
  • Pringle, J. R., A. E. Μ Adams, D. G. Drubin, and B. K. Haarer. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194:565–602.
  • Robbins, J., S. Μ. Dilworth, R. A. Laskey, and C. Dingwall. 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623.
  • Rose, Μ. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Sambrook, J., T. Maniatis, and E. F. Fritsch. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schultz, J., and Μ. Carlson. 1987. Molecular analysis of SSN6, a gene functionally related to the SNFl protein kinase of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3637–3645.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1982. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sherwood, P. Unpublished data.
  • Sherwood, P. W., and Μ. A. Osley. 1991. Histone regulatory (hir) mutations suppress δ insertion alleles in Saccharomyces cerevisiae. Genetics 128:729–738.
  • Sikorski, R. S., Μ. S. Boguski, Μ. Goebl, and P. Hieter. 1990. A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317.
  • Simchen, G., F. Winston, C. A. Styles, and G. R. Fink. 1984. Ty-mediated expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81:2431–2434.
  • Southern, E. Μ. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Spector, Μ. S. Unpublished data.
  • White, J., S. Green, D. Barker, L. Dumas, and L. Johnston. 1987. The CDC8 transcript is cell cycle regulated in yeast and is expressed co-ordinately with CDC, and CDC21 at a point preceding histone transcription. Exp. Cell Res. 171:223–231.
  • Whiteway, M., L. Hougan, D. Dignard, D. Y. Thomas, L. Bell, G. C. Saari, F. J. Grant, P. O’Hara, and V. L. MacKay. 1989. The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56:467–477.
  • Williams, F. E., and R. J. Trumbly. 1990. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:6500–6511.
  • Williams, F. E., U. Varanasi, and R. J. Trumbly. 1991. The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol. Cell. Biol. 11:3307–3316.
  • Wilson, L., H. Niman, R. Houghten, A. Cherenson, Μ. Connolly, and R. Lerner. 1984. The structure of an antigenic determinant in a protein. Cell 37:767–778.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink. 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107:179–197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.