4
Views
16
CrossRef citations to date
0
Altmetric
Gene Expression

Direct Selection for Mutations Affecting Specific Splice Sites in a Hamster Dihydrofolate Reductase Minigene

&
Pages 289-300 | Received 05 Aug 1992, Accepted 12 Oct 1992, Published online: 01 Apr 2023

REFERENCES

  • Adema, G. J., K. L. van Hulst, and P. D. Baas. 1990. Uridine branch acceptor is a cis-acting element involved in regulation of the alternative processing of calcitonin/CGRP-I pre-mRNA. Nucleic Acids Res. 18:5365–5373.
  • Aebi, Μ., H. Hornig, R. A. Padgett, J. Reiser, and C. Weissmann. 1986. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47:555–565.
  • Aebi, Μ., H. Hornig, and C. Weissmann. 1987. 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice region, not by the conserved 5′GU. Cell 50:237–246.
  • Aebi, Μ., and C. Weissmann. 1987. Precision and orderliness in splicing. Trends Genet. 3:102–107.
  • Archibald, A. L., N. A. Thompson, and S. Kvist. 1986. A single nucleotide difference at the 3′ end of an intron causes differential splicing of two histocompatibility genes. EMBO J. 5:957–965.
  • Ashman, C. R., and R. L. Davidson. 1987. DNA base sequence changes induced by ethyl methanesulfonate in a Chromosomally integrated shuttle vector gene in mouse cells. Somatic Cell Mol. Genet. 13:563–568.
  • Bigger, C., J. Strandberg, H. Yagi, D. Jerina, and A. Dippie. 1989. Mutagenic specificity of a potent carcinogen, ben- zo[c]phenanthrene (4R,3S)α-dihydrodiol (2S,1R)α-epoxide, which reacts with adenine and guanine in DNA. Proc. Natl. Acad. Sci. USA 86:2291–2295.
  • Carothers, A. Μ., J. Mucha, and D. Grunberger. 1991. DNA strand-specific mutations induced by (±)-3α,4β-dihydroxy- la,2a-epoxy-l,2,3,4-tetrahydrobenzo[c]phenanthrene in the dihydrofolate reductase gene. Proc. Natl. Acad. Sci. USA 88:5749–5753.
  • Carothers, A. Μ., G. Urlaub, N. Ellis, and L. A. Chasin. 1983. Structure of the dihydrofolate reductase gene in Chinese ham-ster ovary cells. Nucleic Acids Res. 11:1997–2012.
  • Carothers, A. Μ., G. Urlaub, D. Grunberger, and L. A. Chasin. 1988. Mapping and characterization of mutations induced by benzo[a]pyrene diol epoxide at the dihydrofolate reductase locus in CHO cells. Somatic Cell Mol. Genet. 14:169–183.
  • Carothers, A. Μ., G. Urlaub, D. Grunberger, and L. A. Chasin. 1992. Unpublished data.
  • Carothers, A. Μ., G. Urlaub, D. Mucha, D. Grunberger, and L. A. Chasin. 1989. Point mutation analysis in a mammalian gene: rapid preparation of total RNA, PCR amplification of cDNA, and Taq sequencing by a novel method. BioTechniques 7:494–499.
  • Carothers, A. Μ., G. Urlaub, J. Mucha, R. Harvey, L. A. Chasin, and D. Grunberger. 1990. Splicing mutations in the CHO DHFR gene preferentially induced by (±)-3α,4β-dihy- droxy-1a,2a-epoxy-1,2,3,4,-tetrahydrobenzo[c]phenanthrene. Proc. Natl. Acad. Sci. USA 87:5464–5468.
  • Carstens, R. P., W. A. Fenton, and L. R. Rosenberg. 1991. Identification of RNA splicing errors resulting in human orni-thine transcarbamylase deficiency. Am. J. Hum. Genet. 48:1105–1114.
  • Chen, I-T., and L. A. Chasin. 1992. Update on point mutation analysis in a mammalian gene, p. 60. In J. Ellingboe and U. B. Gyllensten (ed.), The PCR technique: DNA sequencing. Eaton Publishing Co., Natick, Mass.
  • Chen, R. W., V. Μ. Maher, and J. J. McCormick. 1990. Effect of excision repair by diploid human fibroblasts on the kinds and locations of mutations induced by BPDE in the coding region of the HPRT gene. Proc. Natl. Acad. Sci. USA 87:8680–8684.
  • Chirgwin, J. Μ., A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299.
  • Ciudad, C. J., G. Urlaub, and L. Chasin. 1988. Deletion analysis of the Chinese hamster dihydrofolate reductase gene promoter. J. Biol. Chem. 263:16274–16282.
  • Clouet-d’Orval, B., Y. d’Aubenton-Carafa, P. Sirand-Pugnet, Μ. Gallego, E. Brody, and J. Marie. 1991. RNA secondary structure repression of a muscle-specific exon in HeLa cell nuclear extracts. Science 252:1823–1828.
  • Crouse, G. F., R. N. McEwan, and Μ. L. Pearson. 1983. Expression and amplification of engineered mouse dihydrofolate reductase minigenes. Mol. Cell. Biol. 3:257–266.
  • Deshler, L. O., and J. J. Rossi. 1991. Unexpected point mutations activate cryptic 3′ splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev. 5:1252–1263.
  • Dipple, A., Μ. A. Pigott, S. K. Agarwal, H. Yagi, J. Μ. Sayer, and D. Μ. Jerina. 1987. Optically active benzo[c]phenanthrene diol epoxides bind extensively to adenine in DNA. Nature (London) 327:535–536.
  • Dominski, Z., and R. Kole. 1991. Selection of splice sites in pre-mRNAs with short internal exons. Mol. Cell. Biol. 11:6075–6083.
  • Eperon, L. P., I. R. Graham, A. D. Griffiths, and I. C. Eperon. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393–401.
  • Freier, S., R. Kierzek, J. A. Jaeger, N. Sugimoto, Μ. Caruthers, T. Neilson, and D. H. Turner. 1986. Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83:9373–9377.
  • Fu, X.-D., R. A. Katz, A. Μ. Skalka, and T. Maniatis. 1991. The role of branchpoint and 3′-exon sequences in the control of balanced splicing of avian retrovirus RNA. Genes Dev. 5:211–220.
  • Fu, X.-D., and T. Maniatis. 1990. Factor required for mammalian Spliceosome assembly is localized to discrete regions in the nucleus. Nature (London) 343:437–441.
  • Fu, X.-Y., and J. L. Manley. 1987. Factors influencing alternative splice site utilization in vitro. Mol. Cell. Biol. 7:738–748.
  • Fuscoe, J. C., R. G. Fenwick, D. H. Ledbetter, and C. T. Caskey. 1983. Deletion and amplification of the HGPRT locus in Chinese hamster cells. Mol. Cell. Biol. 3:1086–1096.
  • Green, Μ. R. 1986. Pre-mRNA splicing. Annu. Rev. Genet. 20:671–708.
  • Green, Μ. R. 1991. Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu. Rev. Cell Biol. 7:559–599.
  • Hampson, R., L. Follette, and F. Rottman. 1989. Alternative processing of bovine growth hormone mRNA is influenced by downstream exon sequences. Mol. Cell. Biol. 9:1604–1610.
  • Hidaka, Y., T. D. Palella, T. E. O’Toole, S. A. Tarlé, and W. N. Kelley. 1987. Human adenine phosphoribosyltransferase: identification of allelic mutations at the nucleotide level as a cause of complete deficiency of the enzyme. J. Clin. Invest. 80:1409–1415.
  • Hornig, H., Μ. Aebi, and C. Weissmann. 1986. Effect of mutations at the lariat branch acceptor site on β-globin pre- mRNA splicing in vitro. Nature (London) 324:589–591.
  • Huang, S., and D. L. Spector. 1991. Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors. Genes Dev. 5:2288–2302.
  • Ip, J., G. Landau, J. Schmidt, and L. A. Chasin. 1992. Unpublished data.
  • Jackson, I. L. 1991. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 19:3795–3798.
  • Kedes, D. H., and J. A. Steitz. 1987. Accurate 5′ splice-site selection in mouse kappa-immunoglobin light chain premessenger RNAs is not cell-type specific. Proc. Natl. Acad. Sci. USA 84:7928–7932.
  • Kedes, D. H., and J. A. Steitz. 1988. Correct in vivo splicing of the mouse immunoglobulin κ light-chain pre-mRNA is dependent on the 5′ splice-site position even in the absence of transcription. Genes Dev. 2:1448–59.
  • Kuivaniemi, H., S. Kontusaari, G. Tromp, Μ. Zhao, C. Sabol, and D. J. Prockop. 1990. Identical G+1 to A mutations in three different introns of the type III procollagen gene (COL3A1) produce different patterns of RNA splicing in three variants of Ehlers-Danlos syndrome IV. J. Biol. Chem. 265:12067–12074.
  • Lawrence, J. B., R. H. Singer, and L. Μ. Marselle. 1989. Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57:493–502.
  • Lebkowski, J., J. H. Miller, and Μ. P. Calos. 1986. Determination of DNA sequence changes induced by ethyl methanesulfonate in human cells using a shuttle vector system. Mol. Cell. Biol. 6:1838–1842.
  • Libri, D., A. Piseri, and Μ. Y. Fiszman. 1991. Tissue-specific splicing in vivo of the β-tropomyosin gene: dependence on an RNA secondary structure. Science 252:1842–1845.
  • Lossi, A.-M., and J.-L. Berge-Lefranc. 1989. The mRNA transcripts from a mutant β-globin gene derived from splicing at preferential cryptic sites. FEBS Lett. 256:163–166.
  • Lowery, D., and B. Van Ness. 1987. In vitro splicing of kappa immunoglobulin precursor mRNA. Mol. Cell. Biol. 7:1346–1351.
  • Lowy, L., A. Pellicer, J. F. Jackson, G.-K. Sim, S. Silverstein, and R. Axel. 1980. Isolation of transforming DNA: cloning the hamster aprt gene. Cell 22:817–823.
  • Mitchell, P., G. Urlaub, and L. A. Chasin. 1986. Spontaneous splicing mutations at the dihydrofolate reductase locus in CHO cells. Mol. Cell. Biol. 6:1926–1935.
  • Mitchell, P. J., A. Μ. Carothers, J. H. Han, J. D. Harding, E. Kas, L. Venolia, and L. A. Chasin. 1986. Multiple transcription start sites, DNase I-hypersensitive sites, and an opposite strand exon in the 5′ region of the CHO dhfr gene. Mol. Cell. Biol. 6:425–440.
  • Mount, S. Μ. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472.
  • Mulligan, R. C., and P. Berg. 1980. Expression of a bacterial gene in mammalian cells. Science 209:1422–1427.
  • Nalbantoglu, J., D. Goncalves, and Μ. Meuth. 1985. Structure of mutant alleles at the APRT locus of CHO cells. J. Mol. Biol. 167:575–594.
  • Nelson, K. K., and Μ. R. Green. 1988. Splice site selection and ribonucleoprotein complex assembly during in vitro pre-mRNA splicing. Genes Dev. 2:319–329.
  • Nelson, K. K., and Μ. R. Green. 1989. Mammalian U2 snRNA has a sequence-specific RNA-binding activity. Genes Dev. 3:1562–1571.
  • Noble, J. C., C. Prives, and J. Manley. 1988. Alternative splicing of SV40 early pre-mRNA is determined by branch site selection. Genes Dev. 2:1460–75.
  • Orkin, S. H., and H. H. Kazazian, Jr. 1984. The mutation and polymorphism of the human β-globin gene and its surrounding DNA. Annu. Rev. Genet. 18:131–71.
  • Patterson, B., and C. Guthrie. 1991. A U-rich tract enhances usage of an alternative 3′ splice site in yeast. Cell 64:181–187.
  • Penotti, F. E. 1991. Human pre-mRNA splicing signals. J. Theor. Biol. 150:385–420.
  • Reed, R. 1989. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3:2113–2123.
  • Reed, R., and T. Maniatis. 1986. A role for exon sequences and splice-site proximity in splice-site selection. Cell 46:681–690.
  • Reed, R., and T. Maniatis. 1988. The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev. 2:1268–1276.
  • Roberson, B., G. Cote, and S. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Ruskin, B., J. Greene, and Μ. Green. 1985. Cryptic branch point activation allows accurate in vitro splicing of human β-globin intron mutants. Cell 41:833–44.
  • Seetharam, S., and I. B. Dicker. 1991. A rapid and complete 4-step protocol for obtaining nucleotide sequence from E. coli genomic DNA from overnight cultures. BioTechniques 11:32–34.
  • Senapathy, P., Μ. P. Shapiro, and N. Harris. 1990. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 183:252–278.
  • Shapiro, Μ. P., and P. Senapathy. 1987. RNA splice junction of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15:7155–7174.
  • Siliciano, P., and C. Guthrie. 1988. 5′ splice site selection in yeast: genetic alterations in base-pairing with U1 reveal additional requirements. Genes Dev. 2:1258–1267.
  • Singer, B., and D. Grunberger. 1983. Molecular biology of mutagens and carcinogens, p. 56–59. Plenum Press, New York.
  • Smith, C. W. J., and B. Nadal-Ginard. 1989. Mutually exclusive splicing of α-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 56:749–758.
  • Southern, E. Μ. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Steingrimsdottir, H., G. Rowley, G. Dorado, J. Cole, and A. R. Lehmann. 1992. Mutations which alter splicing in the human hypoxanthine guanine phosphoribosyltransferase gene. Nucleic Acids Res. 20:1201–1208.
  • Streuli, Μ., and H. Saito. 1989. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J. 8:787–796.
  • Talerico, Μ., and S. Berget. 1990. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10:6299–6305.
  • Turnbull-Ross, A. D., A. J. Else, and I. C. Eperon. 1988. The dependence of splicing efficiency on the length of 3′ exon. Nucleic Acids Res. 16:395–411.
  • Turner, D. H., N. Sugimoto, and S. Freier. 1988. RNA structure prediction. Annu. Rev. Biophys. Chem. 17:167–192.
  • Urlaub, G., and L. A. Chasin. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77:4216–4220.
  • Urlaub, G., E. Kas, A. Μ. Carothers, and L. A. Chasin. 1983. Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 33:405–412.
  • Urlaub, G., P. J. Mitchell, C. J. Ciudad, and L. A. Chasin. 1989. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Mol. Cell. Biol. 9:2868–2880.
  • Urlaub, G., P. J. Mitchell, E. Kas, L. A. Chasin, V. L. Funanage, T. T. Myoda, and J. L. Hamlin. 1986. The effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions. Somatic Cell Mol. Genet. 12:555–566.
  • Venolia, L., G. Urlaub, and L. A. Chasin. 1987. Polyadenylation of Chinese hamster dihydrofolate reductase genomic genes and minigenes after gene transfer. Somat. Cell Mol. Genet. 13:491–501.
  • Vrieling, H., Μ. J. Niericker, J. W. I. Μ. Simons, and A. A. van Zeeland. 1988. Molecular analysis of mutations induced by N-ethyl-N-nitrosourea at the HPRT locus in mouse lymphoma cells. Mutat. Res. 198:99–106.
  • Vrieling, H., Μ. L. Van Roouen, N. A. Groden, Μ. Z. Zdzienicka, J. W. I. Μ. Simons, P. H. Lohman, and A. A. van Zeeland. 1989. DNA strand specificity for UV-induced mutations in mammalian cells. Mol. Cell. Biol. 9:1277–1283.
  • Weber, S., and Μ. Aebi. 1988. In vitro splicing of mRNA precursors: 5′ cleavage site can be predicted from the interaction between the 5′ splice region and the 5′ terminal of U1 snRNA. Nucleic Acids Res. 16:471–486.
  • Wieringa, B., F. Meyer, J. Reiser, and C. Weissmann. 1983. Unusual splice sites revealed by mutagenetic inactivation of an authentic splice site of the rabbit β-globin gene. Nature (London) 301:38–43.
  • Wigler, Μ., A. Pellicer, S. Silverstein, R. Axel, G. Urlaub, and L. A. Chasin. 1979. Transformation of the APRT locus in mammalian cells. Proc. Natl. Acad. Sci. USA 76:1373–1376.
  • Wu, J., and J. L. Manley. 1989. Mammalian pre-mRNA branch site selection by U2 snRNP involves base pairing. Genes Dev. 3:1553–1561.
  • Zhang, L.-H., H. Vrieling, A. A. van Zeeland, and D. Jenssen. 1992. Spectrum of spontaneously occurring mutations in the hprt gene of V7, Chinese hamster cells. J. Mol. Biol. 223:627–635.
  • Zhuang, Y., and A. Weiner. 1986. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell 46:827–835.
  • Zhuang, Y., and A. Weiner. 1989. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev. 3:1545–1552.
  • Zuker, Μ. 1989. On finding all sub-optimal foldings of an RNA molecule. Science 244:48–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.