3
Views
16
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Timing of Molecular Events in Meiosis in Saccharomyces cerevisiae: Stable Heteroduplex DNA is Formed Late in Meiotic Prophase

&
Pages 373-382 | Received 19 Jun 1992, Accepted 08 Oct 1992, Published online: 01 Apr 2023

REFERENCES

  • Alani, E., R. Padmore, and N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436.
  • Astell, C. R., L. Ahlstrom-Jonasson, Μ. Smith, K. Tatchell, K. A. Nasmyth, and B. D. Hall. 1981. The sequence of DNAs coding for the mating-type loci of Saccharomyces cerevisiae. Cell 27:15–23.
  • Beacham, I. R., B. W. Schweitzer, H. Μ. Warrick, and J. Carbon. 1984. The nucleotide sequence of the yeast ARG4 gene. Gene 29:271–279.
  • Bell, L. R., and B. Byers. 1983. Homologous association of chromosomal DNA during yeast meiosis. Cold Spring Harbor Symp. Quant. Biol. 47:829–840.
  • Bianchi, Μ., C. DasGupta, and C. Μ. Radding. 1983. Synapsis and formation of paranemic joints by E. coli RecA protein. Cell 34:931–939.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Borts, R. H., Μ. Lichten, and J. E. Haber. 1986. Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination. Genetics 113:551–567.
  • Cao, L., E. Alani, and N. Kleckner. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in 5. cerevisiae. Cell 61:1089–1101.
  • Carpenter, A. T. C. 1987. Gene conversion, recombination nodules, and the initiation of meiotic synapsis. Bioessays 6:232–236.
  • Connoly, B., C. I. White, and J. E. Haber. 1988. Physical monitoring of mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2342–2349.
  • Fischer, S. G., and L. S. Lerman. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80:1579–1583.
  • Game, J. C., K. C. Sitney, V. E. Cook, and R. K. Mortimer. 1989. Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast. Genetics 123:695–713.
  • Goyon, C., and Μ. Lichten. Unpublished observations.
  • Hastings, P. J. 1987. Meiotic recombination interpreted as heteroduplex correction, p. 107–137. In P. O. Moens (ed.), Meiosis. Academic Press, Inc., Orlando, Fla.
  • Hastings, P. J. 1987. Models of heteroduplex formation, p. 139–156. In P. B. Moens (ed.), Meiosis. Academic Press, Inc., Orlando, Fla.
  • Hsieh, P., C. S. Camerini-Otero, and R. D. Camerini-Otero. 1990. Pairing of homologous DNA sequences by protein: evidence for three-stranded DNA. Genes Dev. 4:1951–1963.
  • Kane, S., and R. Roth. 1974. Carbohydrate metabolism during ascospore development in yeast. J. Bacteriol. 118:8–14.
  • Kleckner, N., R. Padmore, and D. K. Bishop. Meiotic chromosome metabolism: one view. Cold Spring Harbor Symp. Quant. Biol. 56:729–743.
  • Kolodkin, A. L., A. J. S Klar, and F. W. Stahl. 1986. Doublestrand breaks can initiate meiotic recombination in S. cerevisiae. Cell 46:733–740.
  • Lichten, Μ., R. H. Borts, and J. E. Haber. 1987. Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics 115:233–246.
  • Lichten, Μ., C. Goyon, N. P. Schultes, D. Treco, J. W. Szostak, J. E. Haber, and A. Nicolas. 1990. Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevi-siae meiosis. Proc. Natl. Acad. Sci. USA 87:7653–7657.
  • Myers, R. Μ., N. Lumelsky, L. S. Lerman, and T. Maniatis. 1985. Detection of single base substitutions in total genomic DNA. Nature (London) 313:495–498.
  • Nag, D. K., and T. D. Petes. 1990. Genetic evidence for preferential strand transfer during meiotic recombination in yeast. Genetics 125:753–761.
  • Nag, D. K., and T. D. Petes. Personal communication.
  • Nickoloff, J. A., E. Y. Chen, and F. Heffron. 1986. A 24-base-pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. Proc. Natl. Acad. Sci. USA 83:7831–7835.
  • Nicolas, A., D. Treco, N. P. Schultes, and J. W. Szostak. 1989. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature(London) 338:35–39.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Padmore, R., L. Cao, and N. Kleckner. 1991. Temporal comparison of recombination and Synaptonemal complex formation during meiosis in 5. cerevisiae. Cell 66:1239–1256.
  • Plessis, A., A. Perrin, J. E. Haber, and B. Dujon. 1992. Sitespecific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460.
  • Rao, B. J., Μ. Dutreix, and C. Μ. Radding. 1991. A stable three-stranded DNA intermediate made by RecA protein. Proc. Natl. Acad. Sci. USA 88:2984–2988.
  • Resnick, Μ. A., S. Stasiewicz, and J. C. Game. 1983. Meiotic DNA metabolism in wild-type and excision-deficient yeast following UV exposure. Genetics 104:583–601.
  • Roeder, G. S. 1990. Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation. Trends Genet. 6:385–389.
  • Rose, Μ., P. Grisafi, and D. Botstein. 1984. Structure and function of the yeast URA3 gene. Gene 29:113–124.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Rudin, N., and J. E. Haber. 1988. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8:3918–3928.
  • Rudin, N., E. Sugarman, and J. E. Haber. 1989. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122:519–534.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Scherer, S., and R. W. Davis. 1979. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. USA 76:4951–4955.
  • Schultes, N. P., and J. W. Szostak. 1990. Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics 126:813–822.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sherman, F., and H. Roman. 1963. Evidence for two types of allelic recombination in yeast. Genetics 48:255–261.
  • Smithies, O., and P. Powers. 1986. Gene conversions and their relation to homologous chromosome pairing. Philos. Trans. R. Soc. Lond. B 312:291–302.
  • Sun, H., D. Treco, N. P. Schultes, and J. W. Szostak. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature (London) 338:87–90.
  • Sun, H., D. Treco, and J. W. Szostak. 1991. Extensive 3′- Overhanging, single-stranded DNA associated with the meiosis-Specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161.
  • Umlauf, S. W., Μ. Μ. Cox, and R. B. Inman. 1990. Triplehelical pairing intermediates formed by RecA protein. J. Biol. Chem. 265:16898–16912.
  • Vandeyar, Μ. A., Μ. P. Weiner, C. J. Hutton, and C. A. Batt. 1988. A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. Gene 65:129–133.
  • White, C. I., and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:603–610.
  • Wu, T.-C., and Μ. Lichten. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.