0
Views
11
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Saccharomyces cerevisiae SDC25 C-Domain Gene Product Overcomes the Dominant Inhibitory Activity of Ha-Ras Asn-17

, , , , &
Pages 39-43 | Received 27 Jul 1992, Accepted 28 Sep 1992, Published online: 01 Apr 2023

REFERENCES

  • Adari, H., D. R. Lowy, B. Μ. Williimsen, C. J. Der, and F. McCormick. 1988. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521.
  • Ballester, R., D. Marchuk, Μ. Boguski, A. Saulino, R. Letcher, Μ. Wigler, and F. Collins. 1990. The NFl locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851–859.
  • Barlat, I., F. Schweighoffer, Μ. C. Chevallier-Multon, Μ. Duchesne, I. Fath, D. Landais, Μ. Jacquet, and B. Tocque. The Saccharomyces cerevisiae gene product SDC25 C-domain functions as an oncoprotein in NIH 3T3 cells. Oncogene, in press.
  • Bowtel, D., P. Fu, Μ. Simon, and P. Senior. 1992. Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras. Proc. Natl. Acad. Sci. USA 89:6511–6515.
  • Boy-Marcotte, E., F. Damak, J. Camonis, H. Garreau, and Μ. Jacquet. 1989. The C-terminal domain of a gene partially homologous to CDC25 gene suppresses the cdc25-5 mutation in Saccharomyces cerevisiae. Gene 77:21–30.
  • Broek, D., T. Toda, T. Michaeli, C. Levin, C. Birchmeier, Μ. Zoller, S. Powers, and Μ. Wigler. 1987. The S. cerevisiae CDC25 gene product regulates the RASZadenylate cyclase pathway. Cell 48:789–799.
  • Burgering, B. Μ. T., R. H. Medena, J. A. Maasen, Μ. L. Van de Wetering, A. J. Van der Eb, F. McCormick, and J. L. Bos. 1991. Insulin stimulation of gene expression mediated by p21ras activation. EMBO J. 10:1103–1109.
  • Cai, H., P. Erhardt, J∙ Szeberenyi, Μ. T. Diaz-Meco, J. Moscat, and G. Μ. Cooper. Hydrolysis of phosphatidylcholine is stimulated by ras proteins during mitogenic signal transduction. Mol. Cell. Biol. 12:5329–5335.
  • Cai, H., J. Szeberenyi, and G. Μ. Cooper. 1990. Effect of dominant inhibitory Ha-ras mutation on mitogenic signal transduction in NIH 3T3 cells. Mol. Cell. Biol. 10:5314–5323.
  • Calès, C., J. F. Hancock, C. J. Marshall, and A. Hall. 1988. The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature (London) 332:548–551.
  • Clark, S. G., Μ. J. Stern, and R. Horvitz. 1992. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature (London) 256:340–344.
  • Crèchet, J. B., P. Poullet, Μ. Y. Mistou, A. Parmeggiani, J. Camonis, E. Boy-Marcotte, F. Damak, and Μ. Jacquet. 1990. Enhancement of the GDP-GTP exchange of RAS proteins by the carboxyl-terminal domain of SCD25. Science 248:866–868.
  • De Vries-Smits, A. Μ. M., B. Μ. T Buigering, S. J. Leevers, C. J. Marshall, and J. L Bos. 1992. Involvement of p21 ras in activation of extracellular signal-regulated kinase 2. Nature (London) 357:602–604.
  • Downward, J., J. D. Graves, P. H. Warne, S. Rayter, and D∙ A. Cantrell. 1990. Stimulation of p21ras upon T cell activation. Nature (London) 346:719–723.
  • Ellis, C., Μ. Moran, F. McCormick, and T. Dawson. 1990. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature (London) 343:377–381.
  • Farnsworth, C. L., and L. A. Feig. 1991. Dominant inhibitory mutations in the Mg2+-binding site of Ras prevent its activation by GTP. Mol. Cell. Biol. 11:4822–4829.
  • Feig, L. A., and G. Μ. Cooper. 1988. Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated Ras proteins. Mol. Cell. Biol. 8:2472–2478.
  • Feig, L. A., and G. M. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant Ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8:3235–3243.
  • Gibbs, J. B., Μ. S. Marshau, E. Μ. Scolnick, R. A. F. Dixon, and U. S. Vogel. 1990. Modulation of guanine nucleotides bound to Ras in NIH 3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). J. Biol. Chem. 265:20437–20442.
  • Kaibuchi, K., T. Mizuno, H. Fujioka, T. Yamamoto, K. Kishi, Y. Fukumoto, Y. Hori, and Y. Takai. 1991. Molecular cloning of the cDNA for stimulatory GDP/GTP exchange protein for smg p21s (ras p21-like small GTP-binding proteins) and characterization of stimulatory GDP/GTP exchange protein. Mol. Cell. Biol. 11:2873–2880.
  • Martegani, E., Μ. Vanoni, R. Zippel, P. Coecetti, R. Brambilla, C. Ferrari, E. Sturani, and L. Alberghina. 1992. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J. 11:2151–2157.
  • Martin, G. A., D. Viskochil, G. Bollag, P. C. McCabe, W. J. Crosier, H. Haubruck, L. Conroy, R. Clark, P. O’Connell, R. Μ. Cawthon, Μ. A. Innis, and F. McCormick. 1990. The GAP- related domain of the neurofibromatosis type 1 gene product interacts with ras p12. Cell 63:843–849.
  • Martin, G. A., A. Yatani, R. Clark, L. Conroy, P. Polakis, A. Μ. Brown, and F. McCormick. 1992. GAP domains responsible for Ras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science 255:192–194.
  • Mizuno, T., K. Kaibuchi, T. Yamamoto, Μ. Kawamura, T. Sakoda, H. Fujioka, Y. Matsuura, and Y. Takai. 1991. A stimulatory GDP/GTP exchange protein for smg p21 is active on the post-translationally processed form of c-Ki-ras p21 and rhoA p21. Proc. Natl. Acad. Sci. USA 88:6442–6446.
  • Molloy, C. J., D. P. Bottaro, T. P. Fleming, Μ. S. Marshall, J. B. Gibbs, and S. A. Aaronson. 1989. PDGF induction of tyrosine phosphorylation of GTPase activating protein. Nature (London) 342:711–714.
  • Powers, S., K. O’Neill, and Μ. Wigler. 1989. Dominant yeast and mammalian RAS mutants that interfere with the CDC25- dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:390–395.
  • Rey, L., F. Schweighoffer, I. Barlat, J. Camonis, E. Boy-Marcotte, R. Guilbaud, Μ. Jacquet, and B. Tocqué. 1991. The COOH-domain of the product of the Saccharomyces cerevisiae SCD25 gene elicits activation of p21-ras proteins in mammalian cells. Oncogene 6:347–349.
  • Rey, I., P. Soubigou, L. Debussche, C. David, A. Morgat, P. E. Bost, J. F. Mayaux, and B. Tocqué. 1989. Antibodies to synthetic peptide from the residue 33 to 42 domain of c-Ha-ras p21 block reconstitution of the protein with different effectors. Mol. Cell. Biol. 9:3904–3910.
  • Satoh, T., Μ. Endo, Μ. Nakafuku, S. Nakamura, and Y. Kaziro. 1990. Platelet derived growth factor stimulates formation of active p21ras GTP complex in Swiss mouse 3T3 cells. Proc. Natl. Acad. Sci. USA 87:5993–5997.
  • Satoh, T., Μ. Nakafuku, A. Miyqjima, and Y. Kaziro. 1991. Involvement of ras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc. Natl. Acad. Sci. USA 88:3314–3318.
  • Schweighoffer, F., I. Baiiat, Μ. C. Chevallier-Multon, and B. Tocque. 1992. Implication of Gap in Ras-dependent transactivation of a polyoma enhancer sequence. Science 256:825–827.
  • Shou, C., C. L. Farnsworth, B. G. Neel, and L. Feig. 1992. Molecular cloning of cDNAs encoding a guanine-nucleotide releasing factor for Ras p21. Nature (London) 358:351–354.
  • Stacey, D. W., L. A. Feig, and J. B. Gibbs. 1991. Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. Mol. Cell. Biol. 11:4053–4064.
  • Szeberenyi, J., H. Cai, and G. Μ. Cooper. 1990. Effect of a dominant inhibitory Ha-ras mutation on neuronal differentiation of PC12 cells. Mol. Cell. Biol. 10:5324–5332.
  • Szeberenyi, J., P. Erhardt, H. Cai, and G. Μ. Cooper. Role of Ras in signal transduction from the NGF receptor: relationship to protein kinase C, calcium, and cyclic AMP. Oncogene, in press.
  • Thomas, S. Μ., Μ. DeMarco, G. D’Arcangelo, S. Halegoua, and J. Brugge. 1992. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68:1031–1040.
  • Trahey, M., and F. McCormick. 1987. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545.
  • Troppmair, J., J. T. Bruder, J. App, H. Cai, L. Liptak, J. Szeberenyi, G. Μ. Cooper, and U. R. Rapp. 1992. Ras controls coupling of growth factor receptors and protein kinase C in the membrane to Raf-I and B-Raf protein serine kinases in the cytosol. Oncogene 7:1867–1873.
  • West, Μ., H. F. Kung, and T. Kamata. 1990. A novel membrane factor stimulates guanine nucleotide exchange reaction of ras proteins. FEBS Lett. 259:245–248.
  • Wolfman, A., and I. G. Macara. 1990. A cytosolic protein catalyzes the release of GDP from p21ras. Science 248:67–69.
  • Wood, K. W., C. Sarnecki, T. Μ. Roberts, and J. Blenis. 1992. Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68:1041–1050.
  • Yatani, A., K. Okabe, P. Polakis, R. Halenbeck, F. McCormick, and A. Μ. Brown. 1990. Ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels. Cell 61:769–776.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.