4
Views
13
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Effect on Chromosome Stability of Deleting Replication Origins

&
Pages 391-398 | Received 02 Sep 1992, Accepted 26 Sep 1992, Published online: 01 Apr 2023

REFERENCES

  • Bloom, K. Personal communication.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Brewer, B. J., and W. L. Fangman. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Button, L. L., and C. R. Astell. 1988. DNA fragments isolated from the left end of chromosome III in yeast are repaired to generate functional telomeres. Genome 30:758–765.
  • Collins, I., and C. S. Newton. Unpublished data.
  • Dershowitz, A., and C. S. Newton. Unpublished data.
  • Deshpande, A. Μ., and C. S. Newlon. 1992. The ARS consensus sequence is required for chromosomal origin function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4305–4313.
  • Devenish, R. J., and C. S. Newlon. 1982. Isolation and characterization of yeast ring chromosome III by a method applicable to other circular DNAs. Gene 8:277–288.
  • Dubey, D. D., L. R. Davis, S. A. Greenfeder, L. Y. Ong, J. Zhu, J. R. Broach, C. S. Newton, and J. A. Huberman. 1991. Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins. Mol. Cell. Biol. 11:5346–5355.
  • Greenfeder, S. A., and C. S. Newlon. 1992. A replication map of a 61-kb circular derivative of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell 3:999–1013.
  • Greenfeder, S. A., and C. S. Newlon. 1992. Replication forks pause at yeast centromeres. Mol. Cell. Biol. 12:4056–4066.
  • Hartwell, L. H., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Hegemann, J. H., J. H. Shero, G. Cottarel, P. Phillipsen, and P. Hieter. 1988. Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2523–2535.
  • Hieter, P., C. Mann, Μ. Snyder, and R. W. Davis. 1985. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40:381–392.
  • Holm, C., D. W. Meeks-Wagner, W. L. Fangman, and D. Botstein. 1986. A rapid, efficient method for isolating DNA from yeast. Gene 42:169–173.
  • Huberman, J. A., L. D. Spotila, K. A. Nawotka, S. Μ. El-Assouli, and L. R. Davis. 1987. The in vivo replication origin of the yeast 2 μm plasmid. Cell 51:473–481.
  • Huberman, J. A., J. Zhu, L. R. Davis, and C. S. Newlon. 1988. Close association of a DNA replication origin and an ARS element on chromosome III of the yeast, Saccharomyces cerevisiae. Nucleic Acids Res. 16:6373–6384.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnston, L. H., and D. H. Williamson. 1978. An alkaline sucrose gradient analysis of the mechanism of nuclear DNA synthesis in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 164:217–225.
  • Kipling, D., and S. Kearsey. 1990. Reversion of autonomously replicating sequence mutations in Saccharomyces cerevisiae: creation of a eucaryotic replication origin within procaryotic vector DNA. Mol. Cell. Biol. 10:265–272.
  • Lea, D., and C. Coulson. 1949. The distribution of numbers of mutants in bacterial populations. J. Genet. 49:264–285.
  • Louis, E. J., and J. E. Haber. 1989. Nonrecombinant meiosis I nondisjunction in Saccharomyces cerevisiae induced by tRNA ochre suppressors. Genetics 123:81–95.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Murray, A. W., N. P. Schultes, and J. W. Szostak. 1986. Chromosome length controls mitotic chromosome segregation in yeast. Cell 45:529–536.
  • Newlon, C. S. 1988. Yeast chromosome replication and segregation. Microbiol. Rev. 52:568–601.
  • Newlon, C. S., and W. G. Burke. 1980. Replication of small chromosomal DNAs in yeast. ICN-UCLA Symp. Mol. Cell. Biol. 19:399–409.
  • Newlon, C. S., R. Green, K. Hardeman, K. Kim, L. Lipchitz, T. Palzkill, S. Synn, and S. T. Woody. 1986. Structure and organization of yeast chromosome III. UCLA Symp. Mol. Cell. Biol. 33:211–223.
  • Newlon, C. S., L. R. Lipchitz, I. Collins, A. Deshpande, R. J. Devenish, R. P. Green, H. L. Klein, T. G. Palzkill, R. Ren, S. Synn, and S. T. Woody. 1991. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics 129:343–357.
  • Newlon, C. S., T. D. Petes, L. Μ. Hereford, and W. L. Fangman. 1974. Replication of yeast chromosomal DNA. Nature (London) 247:32–35.
  • Oliver, S. G., Q. J. Μ. van der Aart, Μ. L. Agostoni-Carbone, Μ. Aigle, et al. 1992. The complete DNA sequence of yeast chromosome III. Nature (London) 357:38–46.
  • Palzkill, T. G., and C. S. Newlon. 1988. A yeast replication origin consists of multiple copies of a small conserved sequence. Cell 53:441–450.
  • Petes, T. D., and D. H. Williamson. 1975. Fiber autoradiography of replicating yeast DNA. Exp. Cell Res. 95:103–110.
  • Rivier, D. H., and J. Rine. 1992. An origin of DNA replication and a transcription silencer require a common element. Science 256:659–663.
  • Rivin, C. J., and W. L. Fangman. 1980. Replication fork rate and origin activation during the S phase of Saccharomyces cerevisiae. J. Cell Biol. 6:1148–1157.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smith, G. E., and Μ. D. Summers. 1980. The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal. Biochem. 109:123–129.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and R. W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Surosky, R. T., C. S. Newlon, and B.-K. Tye. 1986. The mitotic stability of deletion derivatives of chromosome III in yeast. Proc. Natl. Acad. Sci. USA 83:414–418.
  • Surosky, R. T., and B.-K. Tye. 1985. Resolution of dicentric chromosomes by Ty-mediated recombination in yeast. Genetics 110:397–419.
  • Symington, L. S., and T. D. Petes. 1988. Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol. Cell. Biol. 8:595–604.
  • Theis, J. F., and C. S. Newlon. 1992. The DNA sequence of a 762 bp fragment containing the SUP11-1 gene. Yeast 8:223–225.
  • Tuite, Μ. F., C. R. Mundy, and B. S. Cox. 1981. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98:691–711.
  • Van Houten, J. V., and C. S. Newlon. 1990. Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol. Cell. Biol. 10:3917–3925.
  • Weinert, T. A., and L. H. Hartwell. 1988. The RAD9, gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322.
  • Williamson, D. H. 1965. The timing of deoxyribonucleic acid synthesis in the cell cycle of Saccharomyces cerevisiae. J. Cell Biol. 25:517–528.
  • Yoshikawa, A., and K. Isono. 1990. Chromosome III of Saccharomyces cerevisiae: an ordered clone bank, a detailed restriction map and analysis of transcripts suggest the presence of 160 genes. Yeast 6:383–401.
  • Zhu, J., C. S. Newlon, and J. A. Huberman. 1992. Localization of a DNA replication origin on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4733–4741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.