6
Views
11
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

DNA Polymerases δ and ε are Required for Chromosomal Replication in Saccharomyces cerevisiae

&
Pages 496-505 | Received 29 Jul 1992, Accepted 19 Sep 1992, Published online: 01 Apr 2023

REFERENCES

  • Araki, H., R. K. Hamatake, L. H. Johnston, and A. Sugino. 1991. DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88:4601–4605.
  • Araki, H., P. A. Ropp, A. L. Johnson, L. H. Johnston, A. Morrison, and A. Sugino. 1992. DNA polymerase II, the probable homolog of mammalian DNA polymerase ε, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J. 11:733–740.
  • Bauer, G., H. Μ. HelIer, and P. Μ. J. Burgers. 1988. DNA polymerase III from Saccharomyces cerevisiae. J. Biol. Chem. 263:917–924.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoro-orotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–174.
  • Boulet, A., Μ. Simon, G. Faye, G. A. Bauer, and P. Μ. J. Burgers. 1989. Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase III. EMBO J. 8:1849–1854.
  • Bravo, R., R. Frank, P. A. Blundell, and H. MacDonald-Bravo. 1987. Cyclin PCNA is the auxiliary protein of DNA polymerase δ. Nature (London) 326:515–517.
  • Budd, Μ. Unpublished data.
  • Budd, M., and J. L. Campbell. 1987. Temperature sensitive mutations in the yeast DNA polymerase I gene. Proc. Natl. Acad. Sci. USA 84:2838–2842.
  • Budd, Μ. E., K. C. Sitney, and J. L. Campbell. 1989. Purification of DNA polymerase II a distinct DNA polymerase from Saccharomyces cerevisiae. J. Biol. Chem. 264:6550–6565.
  • Budd, Μ. E., K. D. Witrup, J. E. Bailey, and J. L. Campbell. 1989. DNA polymerase I is required for premeiotic DNA replication and sporulation but not X-ray repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:305–376.
  • Bullock, P., Y. S. Seo, and J. Hurwitz. 1991. Initiation of simian virus 40 DNA synthesis in vitro. Mol. Cell. Biol. 11:2350–2361.
  • Burgers, P. Μ. J. 1991. Saccharomyces cerevisiae replication factor C (I). J. Biol. Chem. 266:22698–22706.
  • Campbell, J. L., and C. S. Newlon. 1991. Chromosomal DNA replication, p. 41–141. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Chang, L. Μ. S. 1977. DNA polymerases from baker’s yeast. J. Biol. Chem. 252:1873–1880.
  • Conrad, Μ. N., and C. S. Newlon. 1983. Saccharomyces cerevisiae cdc2 mutants fail to replicate approximately one-third of their genome. Mol. Cell. Biol. 3:1000–1012.
  • Crute, J. J., A. F. Wahl, and R. A. Bambara. 1986. Purification and characterization of two new high molecular weight forms of DNA polymerase δ. Biochemistry 25:26–36.
  • Friefelder, D. 1970. Molecular weights of coli phages and coli phage DNA. J. Mol. Biol. 54:507–577.
  • Hamatake, R. K., H. Hasegawa, A. B. Clark, K. Bebenet, T. A. Kunkel, and A. Sugino. 1990. Purification and characterization of DNA polymerase II from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 265:4072–4083.
  • Hartwell, L. H. 1976. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J. Mol. Biol. 104:803–817.
  • Higgins, D. R., S. Prakash, P. Reynolds, R. Polakowska, S. Weber, and L. Prakash. 1983. Isolation and characterization of the RAD3 gene of Saccharomyces cerevisiae and inviability of rad3 deletion mutants. Proc. Natl. Acad. Sci. USA 80:5680–5684.
  • Johnson, L. Μ., Μ. Snyder, L. Μ. S Chang, R. W. Davis, and J. L. Campbell. 1985. Isolation of the gene encoding yeast DNA polymerase I. Cell 43:369–377.
  • Johnston, L. H., and D. Williamson. 1978. An alkaline sucrose gradient analysis of the mechanism of nuclear DNA synthesis in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 164:217–225.
  • Kuo, C.-L., N. C. Huang, and J. L. Campbell. 1983. Isolation of yeast DNA replication mutants using permeabilized cells. Proc. Natl. Acad. Sci. USA 80:6465–6469.
  • Lee, S.-H., T. Eki, and J. Hurwitz. 1989. Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases α and δ. Proc. Natl. Acad. Sci. USA 86:7361–7365.
  • Lee, S.-H., Z.-Q. Pau, A. D. Kwong, P. Μ. J Burgers, and J. Hurwitz. 1991. Synthesis of DNA by DNA polymerase ε in vitro. J. Biol. Chem. 33:27707–22717.
  • Melendy, T., and B. Stillman. 1991. Purification of DNA polymerase δ as an essential simian virus 40 DNA replication factor. J. Biol. Chem. 266:1942–1949.
  • Morrison, A., H. Araki, A. B. Clark, R. K. Hawatake, and A. Sugino. 1990. A third essential DNA polymerase in S. cerevisiae. Cell 62:1143–1151.
  • Morrison, A., J. B. Bell, T. A. Kunkel, and A. Sugino. 1991. Eukaryotic DNA polymerase amino acid sequences required for 3'→5' exonuclease activity. Proc. Natl. Acad. Sci. 88:9473–9477.
  • Morrison, D. P., and P. J. Hastings. 1979. Characterization of the mutator mutation mut5-1. Mol. Gen. Genet. 175:57–65.
  • Murakami, Y., C. R. Wolfe, L. Weissbach, F. B. Dean, and J. Hurwitz. 1986. Role of DNA polymerase α and DNA primase in simian virus 40 DNA replication in vitro. Proc. Natl. Acad. Sci. USA 83:2819–2873.
  • Naumovski, L., and E. C. Friedberg. 1982. A DNA repair gene required for the incision of damaged DNA is essential for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:4818–4821.
  • Nethanel, T., and G. Kaufmann. 1990. Two DNA polymerases may be required for synthesis of the lagging DNA strand of simian virus 40. J. Virol. 64:5912–1918.
  • Nishida, C., P. Reinhard, and S. Linn. 1988. DNA repair synthesis in human fibroblasts requires DNA polymerase δ. J. Biol. Chem. 263:501–510.
  • Plevani, P., Q. Badaracco, C. Augl, and L. Μ. S. Chang. 1984. DNA polymerase I and DNA primase complex in yeast. J. Biol. Chem. 759:7532–7539.
  • Prelich, G., Μ. Kostura, D. R. Marshak, Μ. B. Mathews, and B. Stillman. 1987. The cell cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature (London) 326:471–475.
  • Prelich, G., C. K. Tan, Μ. Kostura, Μ. B. Mathews, A. G. So, K. W. Downey, and B. Stillman. 1987. Functional identity of proliferating cell nuclear antigen and a DNA polymerase δ auxiliary protein. Nature (London) 326:517–520.
  • Resnick, Μ. A., J. N. Kasimos, J. C. Game, R. J. Braun, and R. Μ. Roth. 1981. Changes in DNA during meiosis in a repair deficient mutant (rad52) of yeast. Science 212:543–545.
  • Scherer, S. W., and R. W. Davis. 1979. Replacements of chromosome segments with altered DNA sequences constructed in vivo. Proc. Natl. Acad. Sci. USA 76:4951–4955.
  • Shipohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein is involved in repair and recombination in S. cerevisiae and is a RecA-Iike protein. Cell 69:457–470.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuffle vectors and yeast hosts designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Simon, M., L. Giot, and G. Faye. 1991. The 3' to 5' exonuclease activity located in the DNA polymerase δ subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 10:2165–2170.
  • Singh, H., and L. B. Dumas. 1984. DNA primase that copurifies with the major DNA polymerase from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 259:7936–7940.
  • Sitney, K. C., Μ. E. Budd, and J. L. Campbell. 1989. DNA polymerase III, a second essential DNA polymerase is encoded by the S. cerevisiae CDC2 gene. Cell 56:599–605.
  • Slater, Μ. 1973. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J. Bacteriol. 113:262–270.
  • Slonimski, P. P., G. Perrodin, and J. H. Croft. 1968. Ethidium bromide-induced mutation of yeast mitochondria: complete transformation of cells into respiratory deficient nonchromosomal petites. Biochem. Biophys. Res. Commun. 301:232–239.
  • Tan, C. K., C. Castillo, A. G. So, and K. Μ. Downey. 1986. An auxiliary protein for DNA polymerase δ from fetal calf thymus. J. Biol. Chem. 261:12310–12316.
  • Tsurimoto, T., and B. Stillman. 1991. Replication factors required for SV40 DNA replication in vitro. I. J. Biol. Chem. 266:1950–1960.
  • Tsurimoto, T., and B. Stillman. 1991. Replication factors required for SV40 DNA replication in vitro. II. J. Biol. Chem. 266:1961–1968.
  • Weinberg, D. H., and T. J. Kelly. 1989. Requirement for two DNA polymerases in the replication of simian virus 40 DNA in vitro. Proc. Natl. Acad. Sci. USA 86:9742–9746.
  • Williamson, D. H., and D. J. Fennell. 1975. The use of fluorescent DNA binding agent for detecting and separating yeast mitochondrial DNA methods. Cell Biol. 12:335–351.
  • Yoder, B. L., and P. Μ. J. Burgers. 1991. Saccharomyces cerevisiae replication factor C. J. Biol. Chem. 266:22689–22697.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.