5
Views
3
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Suppressors of Clathrin Deficiency: Overexpression of Ubiquitin Rescues Lethal Strains of Clathrin-Deficient Saccharomyces cerevisiae

&
Pages 521-532 | Received 25 Aug 1992, Accepted 20 Oct 1992, Published online: 01 Apr 2023

REFERENCES

  • Becker, D., and L. Guarente. 1991. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194:182–187.
  • Bender, A., and J. Pringle. 1989. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl. Acad. Sci. USA 86:9976–9980.
  • Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast. Mol. Gen. Genet. 197:345–346.
  • Booher, R., and D. Beach. 1987. Interaction between cdc13+ and cdc2+ in the control of mitosis in fission yeast; dissociation of the G1 and G2 roles of the cdc2+ protein kinase. EMBO J. 6:3441–3447.
  • Boorstein, W. R., and E. A. Craig. 1990. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. J. Biol. Chem. 265:18912–18921.
  • Botstein, D., S. C. Falco, S. E. Stewart, Μ. Brennan, S. Scherer, D. T. Stinchcomb, K. Struhl, and R. W. Davis. 1979. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24.
  • Brodsky, F. Μ. 1988. Living with clathrin: its role in intracellular membrane traffic. Science 242:1396–1402.
  • Burgess, T. L., and R. B. Kelly. 1987. Constitutive and regulated secretion of proteins. Annu. Rev. Cell Biol. 3:243–293.
  • Carlson, Μ., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5' ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Cenciarelli, C., D. Hou, H. Kou-Ching, B. L. Rellahan, D. L. Wiest, H. T. Smith, V. A. Fried, and A. Μ. Weissman. 1992. Activation-induced Ubiquitination of the T cell antigen receptor. Science 257:795–797.
  • Church, G. Μ., and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995.
  • Ciechanover, A., R. Gropper, and A. L. Schwartz. 1991. The ubiquitin-activating enzyme is required for lysosomal degradation of cellular proteins under stress. Biomed. Biochim. Acta 50:321–332.
  • Cleves, A. E., P. J. Novick, and V. A. Bankaitis. 1989. Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J. Cell Biol. 109:2939–2950.
  • Dietzel, C., and J. Kurjan. 1987. The yeast SCGl gene: a Gα-like protein implicated in the a- and α-factor response pathway. Cell 50:1001–1010.
  • Doherty, F. L., N. U. Osborn, J. A. Wassell, P. E. Heggie, L. Laszlo, and R. J. Mayer. 1989. Ubiquitin-protein conjugates accumulate in the lysosomal system of fibroblasts treated with cysteine proteinase inhibitors. Biochem. J. 263:47–55.
  • Dunn, W. A. J. 1990. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J. Cell Biol. 110:1923–1933.
  • Fink, G. R., and C. Guthrie (ed.). 1991. Methods in enzymology, vol. 194. Guide to yeast genetics and molecular biology. Academic Press, Inc., San Diego, Calif.
  • Finley, D., B. Bartel, and A. Varshavsky. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature (London). 338:394–401.
  • Finley, D., and U. Chau. 1991. Ubiquitination. Annu. Rev. Cell Biol. 7:25–69.
  • Finley, D., A. Ciechanover, and A. Varshavsky. 1984. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43–55.
  • Finley, D., E. Ozkaynak, and A. Varshavsky. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046.
  • Goebl, Μ. G., J. Yachem, S. Jentsch, J. P. McGrath, A. Varshavsky, and B. Byers. 1988. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241:1331–1335.
  • Goldberg, A. L., and K. Rock. 1992. Proteolysis proteosomes and antigen presentation. Nature (London) 357:375–379.
  • Griffiths, G., and K. Simons. 1986. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234:438–443.
  • Gropper, R., R. A. Brandt, S. Elias, C. F. Bearers, A. Mayer, A. L. Schwartz, and A. Ciechanover. 1991. The ubiquitin-activating enzyme, E1, is required for stress induced lysosomal degradation of cellular proteins. J. Biol. Chem. 266:3602–3610.
  • Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580.
  • Hershko, A. 1991. The ubiquitin pathway for protein degradation. Trends Biochem. Sci. 16:265–268.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jentsch, S. 1992. Ubiquitin-dependent protein degradation: a cellular perspective. Trends Cell Biol. 2:98–103.
  • Jentsch, S., J. P. McGrath, and A. Varshavsky. 1987. The DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature (London) 329:131–134.
  • Johnston, Μ., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Laszlo, L., F. J. Doherty, N. U. Osborn, and R. J. Mayer. 1990. Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts. FEBS Lett. 261:365–368.
  • Lemmon, S. K. Unpublished data.
  • Lemmon, S. K., C. L. Freund, K. Conley, and E. W. Jones. 1990. Genetic instability of clathrin-deficient strains of Saccharomyces cerevisiae. Genetics 124:27–38.
  • Lemmon, S. K., and E. W. Jones. 1987. Clathrin requirement for normal growth of yeast. Science 238:504–509.
  • Lemmon, S. K., V. P. Lemmon, and E. W. Jones. 1988. Characterization of yeast clathrin and anticlathrin heavy-chain monoclonal antibodies. J. Cell. Biochem. 36:329–340.
  • Lemmon, S. K., A. Pellicena-Palle, K. Conley, and C. L. Freund. 1991. Sequence of the clathrin heavy chain from Saccharomyces cerevisiae and the requirement of the COOH terminus for clathrin function. J. Cell Biol. 112:65–80.
  • Lenk, S. E., W. A. J Dunn, J. S. Trausch, A. Ciechanover, and A. L. Schwartz. 1992. Ubiquitin-activating enzyme, E1, is associated with maturation of autophagic vacuoles. J. Cell Biol. 118:301–308.
  • Leung, D. W., S. A. Spencer, G. Cachianes, R. G. Hammonds, C. Collins, W. J. Henzel, R. Barnard, Μ. J. Waters, and W. I. Wood. 1987. Growth hormone receptor and serum binding protein; purification, cloning and expression. Nature (London) 330:537–543.
  • Mori, S., C.-H. Heldin, and L. Claesson-Welsh. 1992. Ligand-induced polyubiquitination of the platelet-derived growth factor β-receptor. J. Biol. Chem. 267:6429–6434.
  • Mortimer, R. K., and J. R. Johnston. 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113:35–43.
  • Mortimore, G. E., A. R. Poso, and B. R. Lardeux. 1989. Mechanisms and regulation of protein degradation in rat liver. Diabetes Metab. Rev. 5:49–70.
  • Mosrin, C., Μ. Riva, Μ. Beltrame, E. Cassar, A. Sentenac, and P. Thuriaux. 1990. The RPC31 gene of Saccharomyces cerevisiae encodes a subunit of RNA polymerase C(III) with an acidic tail. Mol. Cell. Biol. 10:4737–4743.
  • Mueller, S. C., and D. Branton. 1984. Identification of coated vesicles in Saccharomyces cerevisiae. J. Cell Biol. 98:341–346.
  • Munn, A. L., L. Silveira, Μ. Elgort, and G. S. Payne. 1991. Viability of clathrin heavy-chain-deficient Saccharomyces cerevisiae is compromised by mutations at numerous loci: implications for the suppressor hypothesis. Mol. Cell. Biol. 11:3868–3878.
  • Nakano, A., and Μ. Muramatsu. 1989. A novel GTP-binding protein, Sarlp, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Biol. 109:2677–2691.
  • Nelson, K. K., and S. K. Lemmon. Unpublished data.
  • Novick, P., C. Field, and R. Schekman. 1980. Identification of 23 complementation groups required for post translational events in the yeast secretory pathway. Cell 21:205–215.
  • Orlowslty, Μ. 1990. The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 29:10289–10297.
  • Ossig, R., C. Dascher, H.-H. Trepte, H. D. Schmitt, and D. Gallwitz. 1991. The yeast SLY gene products, suppressors of defects in the essential GTP-binding Yptl protein, may act in endoplasmic reticulum-to-Golgi transport. Mol. Cell. Biol. 11:2980–2993.
  • Ozkaynak, E., D. Finley, Μ. J. Solomon, and A. Varshavsky. 1987. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J. 6:1429–1439.
  • Payne, G. S., T. B. Hasson, Μ. S. Hasson, and R. Schekman. 1987. Genetic and biochemical characterization of clathrin deficient Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3888–3898.
  • Payne, G. S., and R. Schekman. 1985. A test of clathrin function in protein secretion and cell growth. Science 230:1009–1014.
  • Payne, G. S., and R. Schekman. 1989. Clathrin: a role in the intracellular retention of a Golgi membrane protein. Science 245:1358–1365.
  • Pearse, B. Μ. F., and Μ. S. Robinson. 1990. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 6:151–171.
  • Sachs, A. B., and R. W. Davis. 1989. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58:857–867.
  • Salminen, A., and P. J. Novick. 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49:527–538.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sandvig, K., and B. van Deurs. 1991. Endocytosis without clathrin. Cell Biol. Int. Rep. 15:3–8.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schwartz, A. L., R. A. Brandt, H. Geuze, and A. Ciechanover. 1992. Stress-induced alterations in autophagic pathway: relationship to ubiquitin system. Am. J. Physiol. 262:cl031–cl038.
  • Schwartz, A. L., A. Ciechanover, R. A. Brandt, and H. J. Geuze. 1988. Immunoelectron microscopic localization of ubiquitin in hepatoma cells. EMBO J. 7:2961–2966.
  • Schwartz, A. L., J. S. Trausch, A. Ciechanover, J. W. Slot, and H. Geuze. 1992. Immunoelectron microscopic localization of the ubiquitin-activating enzyme E1 in HepG2 cells. Proc. Natl. Acad. Sci. USA 89:5542–5546.
  • Seeger, Μ., and G. S. Payne. 1992. A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast. EMBO J. 11:2811–2818.
  • Seeger, Μ., and G. S. Payne. 1992. Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae. J. Cell Biol. 118:531–540.
  • Seufert, W., and S. Jentsch. 1990. Ubiquitin-Conjugating enzymes UBC4 and UBC5 mediate selective degradation of short lived and abnormal proteins. EMBO J. 9:543–550.
  • Siegelman, Μ., Μ. W. Bond, W. Μ. Gallatin, T. St. John, H. T. Smith, V. A. Fried, and I. L. Weissman. 1986. Cell surface molecule associated with lymphocyte homing is a Ubiquitinated branched-chain glycoprotein. Science 231:823–829.
  • Silveira, L. A., D. H. Wong, F. R. Masiarz, and R. Schekman. 1990. Yeast clathrin has a distinctive light chain that is important for cell growth. J. Cell Biol. 111:1437–1449.
  • Simeon, A., I. J van der Klei, Μ. Veenhuis, and D. H. Wolf. 1992. Ubiquitin, a central component of selective cytoplasmic proteolysis, is linked to proteins residing at the locus of non-selective proteolysis, the vacuole. FEBS Lett. 301:231–235.
  • Southern, E. Μ. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Stettler, S., and P. Thuriaux. Personal communication.
  • Struhl, K., D. J. Stinchomb, S. Scherer, and R. W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Tooze, J., and S. A. Tooze. 1986. Clathrin-coated vesicular transport of secretory proteins during the formation of ACTH-containing secretory granules in AtT20 cells. J. Cell Biol. 103:839–850.
  • Tschopp, J. F., S. D. Emr, C. Field, and R. Schekman. 1986. GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J. Bacteriol. 166:313–318
  • Varshavsky, A. 1992. The N-end rule. Cell 69:725–735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.