9
Views
7
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Concerted Action of the Transcriptional Activators REB1, RAP1, and GCR1 in the High-Level Expression of the Glycolytic Gene TPI

&
Pages 543-550 | Received 17 Jun 1992, Accepted 19 Oct 1992, Published online: 01 Apr 2023

REFERENCES

  • Ausubel, F. Μ., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1989. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York.
  • Baker, H. V. 1986. Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutations, and evidence for expression. Mol. Cell. Biol. 6:3774–3784.
  • Baker, H. V. 1991. GCR1 of Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CTTCC sequence motif. Proc. Natl. Acad. Sci. USA 88:9443–9447.
  • Baker, H. V. Unpublished observation.
  • Bitter, G. A., K. K. H Chang, and K. Μ. Egan. 1991. A multicomponent upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Mol. Gen. Genet. 231:22–32.
  • Bradford, Μ. Μ. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Brandl, C. J., and K. Struhl. 1990. A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol. Cell. Biol. 10:4256–5265.
  • Brent, R., and Μ. Ptashne. 1985. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729–736.
  • Brindle, P. K., J. P. Holland, C. E. Willett, Μ. A. Innis, and Μ. J. Holland. 1990. Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABF1 protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription. Mol. Cell. Biol. 10:4872–4895.
  • Butler, G., I. W. Dawes, and D. J. McConnell. 1990. TUF factor binds to the upstream region of the pyruvate decarboxylase structural gene (PDC1) of Saccharomyces cerevisiae. Mol. Gen. Genet. 223:449–456.
  • Chambers, A., C. Stanway, J. S. H Tsang, Y. Henry, A. J. Kingsman, and S. Μ. Kingsman. 1990. ARS binding factor 1 binds adjacent to RAP1 at the UASs of the yeast glycolytic genes PGK and PYK. Nucleic Acids Res. 18:5393–5399.
  • Chambers, A., J. S. H Tsang, C. Stanway, A. J. Kingsman, and S. Μ. Kingsman. 1989. Transcriptional control of the Saccharomyces cerevisiae PGK gene by RAP1. Mol. Cell. Biol. 9:5516–5524.
  • Chasman, D. I., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and R. D. Kornberg. 1990. A yeast protein that influences the chromatin structure of UASg and functions as a powerful auxiliary gene activator. Genes Dev. 4:503–514.
  • Clifton, D., and D. G. Fraenkel. 1981. The gcr1 (glycolysis regulation) mutation of Saccharomyces cerevisiae. J. Biol. Chem. 256:13074–13078.
  • Clifton, D., S. B. Weinstock, and D. G. Fraenkel. 1978. Glycolysis mutants of Saccharomyces cerevisiae. Genetics 88:1–11.
  • Enea, U., C. F. Vovis, and N. D. Zinder. 1975. Genetic studies with heteroduplex DNA of bacteriophage fl. Asymmetric segregation, base correction and implications for the mechanism of genetic recombination. J. Mol. Biol. 96:495–509.
  • Fedor, Μ. J., N. F. Lue, and R. D. Kornberg. 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204:109–127.
  • Fraenkel, D. G. 1982. Carbohydrate metabolism, p. 1–37. In J. N. Strathem, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Fried, Μ., and D. Μ. Crothers. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9:6505–6525.
  • Garner, Μ. Μ., and A. Revzin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: applications to components of Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9:3037–3060.
  • Gill, G., and Μ. Ptashne. 1988. Negative effect of the transcriptional activator GAL4. Nature (London) 334:721–724.
  • Golemis, E. A., and R. Brent. 1992. Fused protein domains inhibit DNA binding by LexA. Mol. Cell. Biol. 12:3006–3014.
  • Hess, B., A. Boiteux, and J. Kruger. 1969. Cooperation of glycolytic enzymes. Adv. Enzyme Regul. 7:149–169.
  • Himmelfarb, H. J., J. Pearlberg, D. H. Last, and Μ. Ptashne. 1990. GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell 63:1299–1309.
  • Holland, Μ. J., and J. P. Holland. 1978. Isolation and identification of yeast messenger ribonucleic acids coding for enolase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. Biochemistry 17:4900–4907.
  • Holland, Μ. J., T. Yokoi, J. P. Holland, K. Myambo, and Μ. A. Innis. 1987. The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:813–820.
  • Huie, Μ. A., and H. V. Baker. Unpublished observation.
  • Huie, Μ. A., E. W. Scott, C. Μ. Drazinic, Μ. C. Lopez, I. K. Hornstra, T. P. Yang, and H. V. Baker. 1992. Characterization of the DNA-binding activity of GCRl: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2690–2700.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells with alkali cations. J. Bacteriol. 153:163–168.
  • Machida, Μ., Y. Jigami, and H. Tanaka. 1989. Purification and characterization of a nuclear factor which binds specifically to the upstream activation sequence of Saccharomyces cerevisiae enolase 1 gene. Eur. J. Biochem. 184:305–311.
  • McNeil, J. B., P. Dykshoorn, J. N. Huy, and S. Small. 1990. The DNA-binding protein RAP1 is required for efficient transcriptional activation of the yeast PYK glycolytic gene. Curr. Genet. 18:405–412.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Morrow, B. E., Q. Ju, and J. R. Warner. 1990. Purification and characterization of the yeast rDNA binding protein REB1. J. Biol. Chem. 265:20778–20783.
  • Nishizawa, Μ., R. Araki, and Y. Teranishi. 1989. Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 9:442–451.
  • Nishizawa, Μ., Y. Suzuki, Y. Nogi, K. Matsumoto, and T. Fukasawa. 1990. Yeast Gal11 protein mediates the transcriptional activation signal of two different transacting factors, Gal4 and general regulatory factor I/repressor/activator site binding protein 1/translation upstream factor. Proc. Natl. Acad. Sci. USA 87:5373–5377.
  • Norton, I. L., and F. C. Hartman. 1972. Haloacetol phosphates. A comparative study of the active sites of yeast and muscle triose phosphate isomerase. Biochemistry 11:4435–4441.
  • Pfeifer, K., B. Arcangioli, and L. Guarente. 1987. Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene. Cell 49:9–18.
  • Rose, Μ. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Scott, E. W., H. E. Allison, and H. V. Baker. 1990. Characterization of TPI gene expression in isogeneic wild-type and gcr1 -deletion mutant strains of Saccharomyces cerevisiae. Nucleic Acids Res. 18:7099–7107.
  • Tornow, J., and G. Μ. Santangelo. 1990. Efficient expression of the Saccharomyces cerevisiae glycolytic gene ADH1 is dependent upon a cis-acting regulatory element (UASrpg) found initially in genes encoding ribosomal proteins. Gene 90:79–85.
  • Uemura, H., and D. G. Fraenkel. 1990. gcr2, a new mutation affecting glycolytic gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:6389–6396.
  • Uemura, H., and Y. Jigami. 1992. Role of GCR2 in transcriptional activation of yeast glycolytic genes. Mol. Cell. Biol. 12:3834–3842.
  • Uemura, H., and Y. Jigami. 1992. GCR3 encodes an acidic protein that is required for expression of glycolytic genes in Saccharomyces cerevisiae. J. Bacteriol. 174:5526–5532.
  • Vignais, M.-L., and A. Sentenac. 1989. Asymmetric DNA bending induced by the yeast multifunctional factor TUF. J. Biol. Chem. 264:8463–8466.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.