1
Views
19
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Transcriptional Activation by the Adenovirus Larger E1a Product is Mediated by Members of the Cellular Transcription Factor ATF Family Which Can Directly Associate with E1a

, , , , , & show all
Pages 561-570 | Received 12 Jun 1992, Accepted 21 Oct 1992, Published online: 01 Apr 2023

REFERENCES

  • Bagchi, S., R. Weinmann, and P. Raychaudhuri. 1991. The retinoblastoma protein copurifies with E2F-I, an ElA-regulated inhibitor of the transcription factor E2F. Cell 65:1063–1072.
  • Bandara, L. R., J. P. Adamczewski, T. Hunt, and N. B. La Thangue. 1991. Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature (London) 352:249–251.
  • Bandara, L. R., and N. B. La Thangue. 1991. Adenovirus ElA prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature (London) 351:494–497.
  • Banerji, J., S. Rusconi, and W. Schaffner. 1981. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308.
  • Berk, A. J. 1986. Adenovirus promoters and ElA transactivation. Annu. Rev. Genet. 20:45–79.
  • Berkowitz, L. A., and Μ. Z. Gilman. 1990. Two distinct forms of active transcription factor CREB (cAMP response element binding protein). Proc. Natl. Acad. Sci. USA 87:5258–5262.
  • Braithwaite, A. W., C. C. Nelson, and A. J. D. Bellet. 1991. Ela revised: the case for multiple cooperative trans-activation domains. New Biol. 3:18–26.
  • Chatterjee, P. K., Μ. Bruner, S. J. Flint, and Μ. L. Harter. 1988. DNA-binding properties of an adenovirus 289R E1A protein. EMBO J. 7:835–841.
  • Chatton, B. Unpublished observation.
  • Chellapan, S. P., S. Hiebert, Μ. Mudryj, J. Μ. Horowitz, and J. R. Nevins. 1991. The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061.
  • Chittenden, T., D. Μ. Livingston, and W. G. Kaelin, Jr. 1991. The T/E1A binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65:1073–1082.
  • Culp, J. S., L. C. Webster, D. J. Friedman, C. L. Smith, W. J. Huang, F. Y. H Wu, Μ. Rosenberg, and R. P. Ricciardi. 1988. The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for transactivation. Proc. Natl. Acad. Sci. USA 85:6450–6454.
  • Evans, R. Μ., and S. Μ. Hollenberg. 1988. Zinc fingers: gilt by association. Cell 52:1–3.
  • Ferguson, B., B. Krippl, O. Andrisani, N. Jones, H. Westphal, and Μ. Rosenberg. 1985. ElA 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol. Cell. Biol. 5:2653–2661.
  • Flint, K. J., and N. C. Jones. 1991. Differential regulation of three members of the ATF/CREB family of DNA-binding protein. Oncogene 6:2019–2026.
  • Flint, S. J., and T. Shenk. 1989. Adenovirus E1A protein paradigm viral transactivator. Annu. Rev. Genet. 23:141–161.
  • Frankel, A. D., L. Chen, R. Cotter, and C. O. Pabo. 1988. Dimerization of the tat protein from human immunodeficiency virus: a cysteine-rich peptide mimics the normal metal-linked dimer interface. Proc. Natl. Acad. Sci. USA 85:6297–6300.
  • Gaire, Μ., B. Chatton, and C. Kédinger. 1990. Isolation and characterisation of two novel, closely related ATF cDNA clones from HeLa cells. Nucleic Acids Res. 18:3467–3473.
  • Giordano, A., P. Whyte, E. Harlow, B. R. Franza, D. Beach, and G. Draetta. 1989. A 60 Kd cdc-2-associated polypeptide complexes with the E1A proteins in adenovirus-infected cells. Cell 58:981–990.
  • Goetz, J. Unpublished observation.
  • Gonzales, G. A., K. K. Yamamoto, W. H. Fisher, D. Karr, P. Menzel, W. Biggs III, W. W. Vale, and Μ. R. Montminy. 1989. A cluster of phosphorylation sites on the cyclic AMP-regulated factor CREB predicted by its sequence. Nature (London) 337:749–752.
  • Gorman, C. Μ., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Green, S., I. Issemann, and E. Sheer. 1988. A versatile in vivo and in vitro expression vector for protein engineering. Nucleic Acids Res. 16:369–370.
  • Hai, T., F. Liu, W. J. Coukos, and Μ. R. Green. 1989. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding hetero-dimers. Genes Dev. 3:2083–2090.
  • Harlow, E., P. Whyte, B. R. Franza, and C. Schley. 1986. Association of adenovirus early-region 1A with cellular polypeptides. Mol. Cell. Biol. 6:1579–1589.
  • Hoeffler, J. P., T. E. Meyer, Y. Yun, J. L. Jameson, and J. F. Habener. 1988. Cyclic-AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242:1430–1433.
  • Honzatko, R. B., J. L. Crawford, H. L. Monaco, J. E. Ladner, B. F. P Ewards, D. R. Evans, S. G. Warren, D. C. Wiley, R. C. Ladner, and W. N. Lipscomb. 1982. Crystal and molecular structures of native and CTP-Iiganded aspartate-carbamoyl-transferase from Escherichia coli. J. Mol. Biol. 160:219–263.
  • Horikoshi, Μ., T. Hai, Y.-S. Lin, Μ. R. Green, and R. G. Roeder. 1988. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54:1033–1042.
  • Horikoshi, N., K. Maguire, A. Kralli, E. Maldonado, D. Reinberg, and R. Weinmann. 1991. Direct interaction between adenovirus E1A protein and the TATA box binding transcription factor IID. Proc. Natl. Acad. Sci. USA 88:5124–5128.
  • Hurst, H. C., N. F. Totty, and N. C. Jones. 1991. Identification and functional characterisation of the cellular activating transcription 43 (ATF-43) protein. Nucleic Acids Res. 19:4601–4609.
  • Imperiale, Μ. J., and J. R. Nevins. 1984. Adenovirus 5 E2 transcription unit: an E1A-inducible promoter with an essential element that functions independently of position or orientation. Mol. Cell. Biol. 4:875–882.
  • Ivashkiv, L. B., H.-C. Liou, C. J. Kara, W. W. Lamph, I. Μ. Verma, and L. H. Glimcher. 1990. MXBP/CRE-BP2 and c-jun form a complex which binds to the cyclic AMP, but not to the 12-O-tetradecanoylphorbol-13-acetate, response element. Mol. Cell. Biol. 10:1609–1621.
  • Jones, C., and K. A. W. Lee. 1991. E1A-mediated activation of the adenovirus E4 promoter can occur independently of the cellular transcription factor E4F. Mol. Cell. Biol. 11:4297–4305.
  • Jones, N. C., P. W. J Rigby, and E. B. Ziff. 1988. Trans-acting protein factors and the regulation of eukaryotic transcription: lessons from studies on DNA tumor viruses. Genes Dev. 2:267–281.
  • Krippl, B., B. Ferguson, Μ. Rosenberg, and H. Westphal. 1984. Functions of purified E1A protein microinjected into mammalian cells. Proc. Natl. Acad. Sci. USA 81:6988–6992.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zekour. 1987. Rapid and efficient site specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Lee, W. S., C. Kao, G. O. Bryant, X. Liu, and A. J. Berk. 1991. Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67:365–376.
  • Leff, T., R. Elkaim, C. R. Goding, P. Jalinot, P. Sassone-Corsi, Μ. Perricaudet, C. Kédinger, and P. Chambon. 1984. Individual products of the adenovirus 12S and 13S E1A mRNAs stimulate viral EIIA and EIII expression at the transcriptional level. Proc. Natl. Acad. Sci. USA 81:4381–4385.
  • Lillie, J. W., and Μ. R. Green. 1989. Transcription activation by the adenovirus E1A protein. Nature (London) 338:39–44.
  • Liou, H.-C., Μ. R. Boothby, P. Finn, R. Davidson, N. Nabavi, N. J. Zeleznick-Le, J. P. Y Ting, and L. Glimcher. 1990. A new member of the leucine zipper class of proteins that binds to the HLA DRa promoter. Science 247:1581–1584.
  • Liu, F., and Μ. R. Green. 1990. A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1A protein. Cell 61:1217–1224.
  • Maekawa, T., S. Matsuda, J. I. Fujisawa, Μ. Yoshida, and S. Ishii. 1991. Cyclic-AMP-response element binding protein, CRE-BP1, mediates the E1A-induced but not the Tax-induced trans-activation. Oncogene 6:627–632.
  • Maekawa, T., H. Sakura, C. Kanei-Ishii, T. Sudo, T. Yoshimura, J. Fujisawa, Μ. Yoshida, and S. Ishii. 1989. Leucine zipper structure of the protein CRE-BP1 binding to the cyclic-AMP-responsive element in brain. EMBO J. 8:2023–2028.
  • Maguire, K., X. P. Shi, N. Horikoshi, J. Rappaport, Μ. Rosenberg, and R. Weinmann. 1991. Interactions between adenovirus E1A and members of the AP-1 family of cellular transcription factors. Oncogene 6:1417–1422.
  • Martin, K. J., J. W. Lillie, and Μ. R. Green. 1990. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature (London) 346:147–152.
  • Mazen, A., G. Gradwohl, and G. De Murcia. 1988. Zinc-binding proteins detected by protein blotting. Anal. Biochem. 172:39–42.
  • Moran, E., and Μ. B. Mathews. 1987. Multiple functional domains in the adenovirus E1A gene. Cell 48:177–178.
  • Mudryj, Μ., S. H. Devoto, S. W. Hiebert, T. Hunter, J. Pines, and J. R. Nevins. 1991. Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65:1243–1253.
  • Pepinsky, R. B. 1991. Selective precipitation of proteins from guanidine hydrochloride-containing solutions with ethanol. Anal. Biochem. 195:177–181.
  • Raychaudhuri, P., S. Bagchi, S. H. Devoto, V. B. Kraus, E. Moran, and J. R. Nevins. 1991. Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev. 5:1200–1211.
  • Schöler, H. R., T. Ciesiolka, and P. Gruss. 1991. A nexus between Oct-4 and E1A: implications for gene regulation in embryonic stem cells. Cell 66:291–304.
  • Simon, Μ. C., R. J. Rooney, T. Μ. Fisch, N. Heintz, and J. R. Nevins. 1990. E1A-dependent transactivation of the promoter requires the TATA sequence. Proc. Natl. Acad. Sci. USA 87:513–517.
  • Vallee, B. L., J. E. Coleman, and D. S. Auld. 1991. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc. Natl. Acad. Sci. USA 88:999–1003.
  • Webster, L. C., and R. P. Ricciardi. 1991. trans-Dominant mutants of E1A provide genetic evidence that the zinc finger of the trans-activating domain binds a transcription factor. Mol. Cell. Biol. 11:4287–4296.
  • Webster, N., J. R. Jin, S. Green, Μ. Hollis, and P. Chambon. 1988. The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the Gal4 transactivator. Cell 52:169–178.
  • Webster, N. J. G., S. Green, D. Tasset, Μ. Ponglikitmongkol, and P. Chambon. 1989. The transcriptional activation function located in the hormone-binding domain of the human oestrogen receptor is not encoded by a single exon. EMBO J. 8:1441–1446.
  • Whyte, P., N. Μ. Williamson, and E. Harlow. 1989. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75.
  • Winberg, G., and T. Shenk. 1984. Dissection of overlapping functions within the adenovirus type 5 E1A gene. EMBO J. 3:1907–1912.
  • Wu, L., D. S. E Rosser, Μ. C. Schmidt, and A. Berk. 1987. A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature (London) 326:512–515.
  • Yee, S. P., and P. E. Branton. 1985. Analysis of multiple forms of human adenovirus type 5 E1A polypeptides using an antipeptide antiserum specific for the aminoterminus. Virology 146:315–322.
  • Zajchowski, D. A., H. Boeuf, and C. Kédinger. 1985. The adenovirus-2 early EIIA transcription unit possesses two overlapping promoters with different sequence requirements for E1A-dependent stimulation. EMBO J. 4:1293–1300.
  • Zu, Y. L., T. Maekawa, S. Matsuda, and S. Ishii. 1991. Complete putative metal finger and leucine zipper structures of CRE-BPl are required for the E1a-induced transactivation. J. Biol. Chem. 35:24134–24139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.