7
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Splicing in Caenorhabditis elegans Does Not Require an AG at the 3' Splice Acceptor Site

, , , , &
Pages 626-637 | Received 05 May 1992, Accepted 28 Oct 1992, Published online: 01 Apr 2023

REFERENCES

  • Aebi, M., H. Hornig, R. A. Padgett, J. Reiser, and C. Weisman. 1986. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47:555–565.
  • Aroian, R. V., Μ. Koga, J. E. Mendel, Y. Ohshima, and P. W. Sternberg. 1990. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature (London) 348:693–699.
  • Aroian, R. V., G. Lesa, and P. Sternberg. Unpublished data.
  • Aroian, R. V., and P. W. Sternberg. 1991. Multiple functions of let-23, a Caenorhabditis elegans receptor tyrosine kinase gene required for vulval induction. Genetics 128:251–267.
  • Atweh, G. F., N. P. Anagnou, J. Shearin, B. G. Forget, and R. E. Kaufman. 1985. β-Thalassemia resulting from a single nucleotide substitution in an acceptor site. Nucleic Acids Res. 13:777–790.
  • Blumenthal, T. 1992. Personal communication.
  • Blumenthal, T., and J. Thomas. 1988. cis and trans mRNA splicing in C. elegans. Trends Genet. 4:305–308.
  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.
  • Carstens, R. P., W. A. Fenton, and L. R. Rosenberg. 1991. Identification of RNA splicing errors resulting in human ornithine transcarbamylase deficiency. Am. J. Hum. Genet. 48:1105–1114.
  • Chen, S∙-H., Μ. Zhang, A. R. Thompson, G. L. Bray, and C. R. Scott. 1991. Splice junction mutations in factor IX gene resulting in severe hemophilia B. Nucleic Acids Res. 19:1172.
  • Cladaras, C., Μ. Hadzopoulou-Cladaras, B. K. Felber, G. Pavlakis, and V. I. Zannis. 1987. The molecular basis of a familial apoE deficiency. J. Biol. Chem. 262:2310–2315.
  • Cox, G. N., J. S. Laufer, Μ. Kusch, and R. S. Edgar. 1980. Genetic and phenotypic characterization of roller mutants of Caenorhabditis elegans. Genetics 95:317–339.
  • Deshler, J. O., and J. J. Rossi. 1991. Unexpected point mutations activate cryptic 3' splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev. 5:1252–1263.
  • Ferguson, E. L., and H. R. Horvitz. 1985. Identification and characterization of 22 genes that affect the vulval cell lineages of Caenorhabditis elegans. Genetics 110:17–72.
  • Ferguson, E. L., P. W. Sternberg, and H. R. Horvitz. 1987. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature (London) 326:259–267.
  • Fields, C. 1990. Information content of Caenorhabditis elegans splice site sequences varies with intron length. Nucleic Acids Res. 18:1509–1512.
  • Fouser, L. A., and J. D. Friesen. 1987. Effects on mRNA splicing of mutations in the 3' region of the Saccharomyces cerevisiae actin intron. Mol. Cell. Biol. 7:225–230.
  • Gao, F., H. Endo, and Μ. Yamamoto. 1989. Length heterogeneity in rat salivary gland α2μ globulin mRNAs: multiple splice-acceptors and polyadenylation sites. Nucleic Acids Res. 17:4629–4636.
  • Gilliland, G., S. Perrin, K. Blanchard, and H. F. Bunn. 1990. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87:2725–2729.
  • Gilliland, G., S. Perrin, and H. F. Bunn. 1990. Competitive PCR for quantitation of mRNA, p. 60–69. In Μ. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, Inc., San Diego, Calif.
  • Goguel, V., X. Liao, B. C. Rymond, and Μ. Rosbash. 1991. U1 snRNP can influence 3'-splice site selection as well as 5'-splice site selection. Genes Dev. 5:1430–1438.
  • Guillermit, H., P. Fanen, and C. Ferec. 1990. A 3' splice site consensus sequence mutation in the cystic fibrosis gene. Hum. Genet. 85:450–453.
  • Hanioka, N., S. Kimura, U. A. Meyer, and F. J. Gonzalez. 1990. The human CYP2D locus associated with a common genetic defect in drug oxidation: a G1934 → A base change in intron 3 of a mutant CYP2D6 allele results in an aberrant 3' splice recognition site. Am. J. Hum. Genet. 47:994–1001.
  • Hata, A., Μ. Emi, G. Luc, A. Basdevant, P. Gambert, P.-H. Iverius, and J.-M. Lalouel. 1990. Compound heterozygote for lipoprotein lipase deficiency: ser → thr244 and transition in 3' splice site of intron 2 (AG → AA) in the lipoprotein lipase gene. Am. J. Hum. Genet. 47:721–726.
  • Hawkins, J. D. 1988. A survey of intron and exon lengths. Nucleic Acids Res. 21:9893–9907.
  • Hedley, Μ. L., J. Forman, and P. W. Tucker. 1989. Mutation of 3' splice sites in two different class I genes results in different usage of cryptic splice sites. J. Immunol. 143:1018–1025.
  • Higashi, Y., A. Tanae, H. Inoue, T. Hiromasa, and Y. Fuji-Kuriyama. 1988. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450(C21)] deficiency in humans: possible gene conversion products. Proc. Natl. Acad. Sci. USA 85:7486–7490.
  • Jackson, I. J. 1991. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 19:3795–3798.
  • Jongeward, G., R. V. Aroian, and P. W. Sternberg. Unpublished results.
  • Jongeward, G., and P. W. Sternberg. Unpublished results.
  • Kawasaki, E. S. 1990. Amplification of RNA, p. 21–27. In Μ. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, Inc., San Diego, Calif.
  • Kay, R. J., R. H. Russnak, D. Jones, C. Mathias, and E. P. Μ. Candido. 1987. Expression of intron-containing C. elegans heat shock genes in mouse cells demonstrates divergence of 3' splice site recognition sequences between nematodes and vertebrates, and an inhibitory effect of heat shock on the mammalian splicing apparatus. Nucleic Acids Res. 15:3723–3741.
  • Kobayashi, K., M. J. Jackson, D. B. Tick, W. E. O’Brien, and A. L. Beaudet. 1990. Heterogeneity of mutations in arginosuccinate synthetase causing human Citrullinemia. J. Biol. Chem. 265:11361–11367.
  • Kramer, J. Μ., G. N. Cox, and D. Hirsh. 1982. Comparisons of the complete sequences of two collagen genes from Caenorhabditis elegans. Cell 30:599–606.
  • Kramer, J. Μ., R. P. French, E. Park, and J. J. Johnson. 1990. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol. Cell. Biol. 10:2081–2089.
  • Kramer, J. Μ., J. J. Johnson, R. S. Edgar, C. Basch, and S. Roberts. 1988. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 55:555–565.
  • Kuiper, Μ. T., Μ. HoItrop, H. Vennema, A. Μ. Lambowitz, and H. de Vries. 1988. A 3' splice site mutation in a nuclear gene encoding a mitochondrial ribosomal protein in Neurospora crassa. J. Biol. Chem. 263:2848–2852.
  • Lamond, A. I., Μ. Μ. Konarska, and P. A. Sharp. 1987. A mutational analysis of Spliceosome assembly: evidence for splice site collaboration during Spliceosome formation. Genes Dev. 1:532–543.
  • Levy, A., and J. Kramer. Unpublished data.
  • Metherall, J. E., F. S. Collins, J. Pan, S. Μ. Weissman, and B. G. Forget. 1986. β0 Thalessemia caused by a base substitution that creates an alternative splice acceptor site in an intron. EMBO J. 5:2551–2557.
  • Miner, J. H., and B. J. Wold. 1991. c-myc inhibition of MyoD and myogenin-initiated myogenic differentiation. Mol. Cell. Biol. 11:2842–2851.
  • Mitchell, P. J., G. Urlaub, and L. Chasin. 1986. Spontaneous splicing mutations at the dihydrofolate reductase locus in Chinese hamster ovary cells. Mol. Cell. Biol. 6:1926–1935.
  • Mules, E. H., C. E. Dowling, Μ. B. Petersen, H. H. Kazazian, and G. H. Thomas. 1991. A novel mutation in the invariant AG of the acceptor splice site of intron 4 of the β-hexosaminidase α-subunit gene in two unrelated American Black GM2-Gangliosidosis (Tay-Sachs disease) patients. Am. J. Hum. Genet. 48:1181–1185.
  • Nelson, K. K., and Μ. R. Green. 1988. Spice site selection and ribonucleoprotein complex assembly during in vitro pre-mRNA splicing. Genes Dev. 2:319–329.
  • Newman, A. J., and C. Norman. 1992. U5 snRNA interacts with exon sequences at 5' and 3' splice sites. Cell 68:743–754.
  • Ogg, S. C., P. Anderson, and Μ. P. Wickens. 1990. Splicing of a C. elegans myosin pre-mRNA in a human nuclear extract. Nucleic Acids Res. 18:143–149.
  • Patterson, B., and C. Guthrie. 1991. A U-rich tract enhances usage of an alternative 3' splice site in yeast. Cell 64:181–187.
  • Reed, R. 1989. The organization of 3' splice-site sequences in mammalian introns. Genes Dev. 3:2113–2123.
  • Reed, R., and T. Maniatis. 1985. Intron sequences involved in lariat formation during pre-mRNA splicing. Cell 41:95–105.
  • Robberson, B. L., G. J. Cote, and S. Μ. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Ruffner, D. E., and A. Dugaiczyk. 1988. Splicing mutation in human hereditary analbuminemia. Proc. Natl. Acad. Sci. USA 85:2125–2129.
  • Ruskin, B., and Μ. R. Green. 1985. Role of the 3' splice site consensus sequence in mammalian pre-mRNA splicing. Nature (London) 317:732–734.
  • Satokata, I., K. Tanaka, N. Miura, I. Miyamoto, Y. Satoh, S. Kondo, and Y. Okada. 1990. Characterization of a splicing mutation in group A xeroderma pigmentosum. Proc. Natl. Acad. Sci. USA 87:9908–9912.
  • Senapathy, P., Μ. B. Shapiro, and N. L. Harris. 1990. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 183:252–278.
  • Smith, C. W. J., E. B. Porro, J. G. Patton, and B. Nadal-Ginard. 1989. Scanning from an independently specified branch point defines the 3' splice site of mammalian introns. Nature (London) 342:243–247.
  • Su, T.-S., and L.-H. Lin. 1990. Analysis of a splice acceptor site mutation which produces multiple splicing abnormalities in the human arginosuccinate synthetase locus. J. Biol. Chem. 265:19716–19720.
  • Sulston, J., and J. Hodgkin. 1988. Methods, p. 587–606. In W. B. Wood (ed.), The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sulston, J. E., and S. Brenner. 1974. The DNA of Caenorhabditis elegans. Genetics 77:95–104.
  • Thomas, J., K. Lea, E. Zucker-Aprison, and T. Blumenthal. 1990. The Spliceosomal snRNAs of Caenorhabditis elegans. Nucleic Acids Res. 18:2633–2642.
  • Thomas, J. A., R. C. Conrad, and T. Blumenthal. 1988. The C. elegans trans-spliced leader RNA is bound to Sm and has a trimethylguanosine cap. Cell 54:533–539.
  • Treisman, R., S. H. Orkin, and T. Maniatis. 1983. Specific transcription and RNA splicing defects in five cloned β-thalas-saemia genes. Nature (London) 302:591–596.
  • Tromp, G., and D. J. Prockop. 1988. Single base mutation in the proα2(I) collagen gene that causes efficient splicing of RNA from exon 27 to exon 2, and synthesis of a shortened but in-frame proα2(I) chain. Proc. Natl. Acad. Sci. USA 85:5254–5258.
  • Vijayraghavan, U., R. Parker, J. Tamm, Y. Iimura, J. Rossi, J. Abelson, and C. Guthrie. 1986. Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the Spliceosome. EMBO J. 5:1683–1695.
  • von Mende, N., D. Bird, P. S. Albert, and D. L. Riddle. 1988. dpy-13: a nematode collagen gene that affects body shape. Cell 55:567–576.
  • Wenger, R. H., and P. J. Nielsen. 1991. Reannealing of artificial heteroduplexes generated during PCR-mediated genetic isotyping. Trends Genet. 7:178.
  • Wiebauer, K., J.-J. Herrero, and W. Filipowicz. 1988. Nuclear pre-mRNA processing in plants: distinct modes of 3'-splice-site selection in plants and animals. Mol. Cell. Biol. 8:2042–2051.
  • Wieringa, B., E. Hofer, and C. Weissmann. 1984. A minimal intron length but no specific internal sequence is required for splicing the large rabbit β-globin intron. Cell 37:915–925.
  • Zorn, A. Μ., and P. A. Krieg. 1991. PCR analysis of alternative splicing pathways: identification of artifacts generated by heteroduplex formation. BioTechniques 11:180–184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.