2
Views
9
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

SPT13 (GAL11) of Saccharomyces cerevisiae Negatively Regulates Activity of the MCM1 Transcription Factor in Ty1 Elements

&
Pages 63-71 | Received 09 Jun 1992, Accepted 05 Oct 1992, Published online: 01 Apr 2023

REFERENCES

  • Ammerer, G. 1990. Identification, purification and cloning of a polypeptide (PRTF/GRM) that binds to mating-specific promoter elements in yeast. Genes Dev. 4:299–312.
  • Ausubel, F. Μ., R. Brent, R. E. Kingston, D. E. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1989. Current protocols in molecular biology, vol. 1. John Wiley & Sons, Inc., New York.
  • Carlson, Μ., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Christ, C., and B.-K. Tye. 1991. Functional domains of the yeast transcription/replication factor MCMl. Genes Dev. 5:751–763.
  • Company, M., C. Adler, and B. Errede. 1988. Identification of a Tyl regulatory sequence responsive to STE7 and STE12. Mol. Cell. Biol. 8:2545–2554.
  • Company, M., and B. Errede. 1987. Cell-type-dependent gene activation by yeast transposon Tyl involves multiple regulatory determinants. Mol. Cell. Biol. 7:3205–3211.
  • Company, Μ., and B. Errede. 1988. A Tyl cell-type-specific regulatory sequence is a recognition element for a constitutive binding factor. Mol. Cell. Biol. 8:5299–5309.
  • Eibel, H., and P. Philippsen. 1984. Preferential integration of yeast transposable element Ty into a promoter region. Nature (London) 307:386–388.
  • Elder, R. T., E. Y. Loh, and R. W. Davis. 1983. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80:2432–2436.
  • Elder, R. T., T. P. St. John, D. T. Stinchcomb, and R. W. Davis. 1981. Studies on the transposable element Ty1 of yeast. I. RNA homologous to Ty1. Cold Spring Harbor Symp. Quant. Biol. 45:581–584.
  • Errede, B. 1992. MCMl binds to a transcriptional control element in Ty1. Mol. Cell. Biol. 13:57–62.
  • Errede, B., T. S. Cardillo, F. Sherman, E. Dubois, J. Desehamps, and J. Μ. Wiame. 1980. Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22:427–436.
  • Errede, B., Μ. Company, J. D. Ferchak, C. A. Hutchison III, and W. S. Yarnell. 1985. Activation regions in a yeast transposon have homology to mating type control sequences and to mammalian enhancers. Proc. Natl. Acad. Sci. USA 82:5423–5427.
  • Errede, B., Μ. Company, and C. A. Hutchison IΠ. 1987. Tyl sequence with enhancer and mating-type-dependent regulatory activities. Mol. Cell. Biol. 7:258–265.
  • Fassler, J. S., W. Gray, J. P. Lee, G. Yu, and G. Gingerich. 1991. The Saccharomyces cerevisiae SPT14 gene is essential for normal expression of the yeast transposon, Ty, as well as for expression of the HIS4 gene and several genes in the mating pathway. Mol. Gen. Genet. 230:310–320.
  • Fassler, J. S., and F. Winston. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:203–212.
  • Fassler, J. S., and F. Winston. 1989. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol. Cell. Biol. 9:5602–5609.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Feinberg, A. P., and B. Vogelstein. 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity (addendum). Anal. Biochem. 137:266–267.
  • Guarente, L., and Μ. Ptashne. 1981. Fusion of Escherichia coli lacZ to the cytochrome C gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Himmelfarb, H. J., J. Peariberg, D. H. Last, and Μ. Ptashne. 1990. GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell 63:1299–1309.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation for yeast efficiently releases plasmids for transformation of E. coli. Gene 57:267–272.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jarvis, E. E., K. L. Clark, and G. F. Sprague, Jr. 1989. The yeast transcription activator PRTF, a homolog of the mammalian serum response factor, is encoded by the MCM1 gene. Genes Dev. 3:936–945.
  • Keleher, C. A., Μ. J. Redd, J. Schultz, Μ. Carlson, and A. D. Johnson. 1992. Ssn6-Tupl is a general repressor of transcription in yeast. Cell 68:709–719.
  • Kingsman, A. J., R. Gimlich, L. Clarke, C. Chinault, and J. Carbon. 1981. Sequence variation in dispersed repetitive sequences in Saccharomyces cerevisiae. J. Mol. Biol. 145:619–632.
  • Larson, G. P., K. Itakura, H. Ito, and J∙ J. Rossi. 1983. Saccharomyces cerevisiae actin-Escherichia coli lacZ gene fusions: synthetic oligonucleotide-mediated deletion of the 309 base pair intervening sequences in the actin gene. Gene 22:31–39.
  • Laskey, R. A. 1980. The use of intensifying screens or organic ScintiUators for visualizing radioactive molecules resolved by gel electrophoresis. Methods Enzymol. 65:363–371.
  • Liao, X.-B., J. J. Clare, and P. J. Farabaugh. 1987. The upstream activation site of a Ty2 element of yeast is necessary but not sufficient to promote maximal transcription of the element. Proc. Natl. Acad. Sci. USA 84:8520–8524.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mortimer, R. K., and D. C. Hawthorne. 1969. Yeast genetics, p. 385–460. In A. H. Rose and J. S. Harrison (ed.), The yeasts. Academic Press, Inc., New York.
  • Nishizawa, Μ., Y. Suzuki, Y. Nogi, K. Matsumoto, and T. Fukasawa. 1990. Yeast Gal11 protein mediates the transcriptional activation signal of two different trans-acting factors, Gal4 and general regulatory factor I/repressor/activator site binding protein 1/translation upstream factor. Proc. Natl. Acad. Sci. USA 87:5373–5377.
  • Nogi, Y., and T. Fukasawa. 1980. A novel mutation that affects UtUization of galactose in Saccharomyces cerevisiae. Curr. Genet. 2:115–120.
  • Passmore, S., G. T. Maine, R. Elble, C. Christ, and B∙-K. Tye. 1988. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATa cells. J. Mol. Biol. 204:593–606.
  • Roeder, G. S., P. J. Farabaugh, D. T. Chaleff, and G. R. Fink. 1980. The origins of gene instability in yeast. Science 209:1375–1380.
  • Roeder, G. S., A. B. Rose, and R. E. Pearlman. 1985. Transposable element sequences involved in the enhancement of yeast gene expression. Proc. Natl. Acad. Sci. USA 82:5428–5432.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1978. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Simchen, G., F. Winston, C. A. Styles, and G∙ R. Fink. 1984. Ty-mediated expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81:2431–2434.
  • Suzuki, Y., Y. Nogi, A. Abe, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Vallier, L. B., and Μ. Carlson. 1991. New SNF genes, GAL11 and GRR1 affect SUC2 expression in Saccharomyces cerevisiae. Genetics 129:675–684.
  • Walker, S. S., S. C. Francesconi, B.-K. Tye, and S. Eisenberg. 1989. The OBFl protein and its DNA-binding site are important for the function of an autonomously replicating sequence in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:2914–2921.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink. 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 197:179–197.
  • Winston, F., F. Chumley, and G∙ R. Fink. 1983. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 101:211–227.
  • Yu, G., and J. S. Fassler. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.