9
Views
15
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Roles of Multiple Glucose Transporters in Saccharomyces cerevisiae

, &
Pages 638-648 | Received 01 Jun 1992, Accepted 26 Oct 1992, Published online: 01 Apr 2023

REFERENCES

  • Bisson, L. F. Personal communication.
  • Bisson, L. F., and D. G. Fraenkel. 1983. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:1730–1734.
  • Bisson, L. F., L. Neigeborn, Μ. Carlson, and D. G. Fraenkel. 1987. The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J. Bacteriol. 168:1656–1662.
  • Celenza, J. L., L. Marshall-Carlson, and Μ. Carlson. 1988. The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc. Natl. Acad. Sci. USA 85:2130–2134.
  • Christianson, T. W., R. S. Sikorski, Μ. Dante, J. H. Shero, and P. Hieter. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.
  • Devereaux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6.
  • Feinberg, A. P., and B. Vogelstein. 1984. Addendum: a technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137:266.
  • Gaber, R. F., C. A. Styles, and G. R. Fink. 1988. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:2848–2859.
  • Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study the expression of cloned genes in yeast. Methods Enzymol. 101:181–191.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Ko, C., T. Herman, C. Lin, and R. Gaber. Unpublished data.
  • Ko, C. H., and R. F. Gaber. 1991. TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4266–4273.
  • Kruckeberg, A. L., and L. F. Bisson. 1990. The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol. Cell. Biol. 10:5903–5913.
  • Lewis, D. A., and L. F. Bisson. 1991. The HXTl gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol. Cell. Biol. 11:3804–3813.
  • Maiden, Μ. C. J., E. O. Davis, S. A. Baldwin, D. C. Moore, and P. J. F. Henderson. 1987. Mammalian and bacterial sugar transporters are homologous. Nature (London) 325:641–643.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marshall-Carison, L., J. L. Celenza, B. C. Laurent, and Μ. Carlson. 1990. Mutational analysis of the SNF3 glucose transporter in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1105–1115.
  • McCormick, K., J. T. Campanelli, Μ. Ramaswami, Μ. K. Mathew, Μ. A. Tanouye, L. E. Iverson, and B. Ruby. 1989. Leucine-zipper motif update. Nature (London) 340:103.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mueckler, Μ., C. Caruso, S. A. Baldwin, Μ. Panico, I. Blench, H. R. Morris, W. J. Allard, G. E. Lienhard, and H. F. Lodish. 1985. Sequence and structure of a human glucose transporter. Science 229:941–945.
  • Myers, A. Μ., A. Tzagoloff, D. Kinney, and C. J. Lusty. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299–310.
  • Neigeborn, L., and Μ. Carlson. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858.
  • Neigeborn, L., P. Schwartzberg, R. Reid, and C. Carlson. 1986. Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations. Mol. Cell. Biol. 6:3569–3574.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1983. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 101:228–245.
  • Perkins, D. 1949. Biochemical mutants in the smut fungus, Ustilago maydis. Genetics 34:607–626.
  • Sauer, N., K. Friedlander, and U. Graml-Wicke. 1990. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J. 10:3045–3050.
  • Sherman, F., G. R. Fink, and J. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. J., and P. Hieter. 1989. A system of shuttle vectors and host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 112:19–27.
  • Szkutnicka, K., J. Tschopp, L. Andrews, and V. Cirillo. 1989. Sequence and structure of the yeast galactose transporter. J. Bacteriol. 171:4486–4493.
  • White, Μ. K., and Μ. J. Weber. 1989. Leucine-zipper motif update. Nature (London) 340:103–104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.