3
Views
21
CrossRef citations to date
0
Altmetric
Gene Expression

Developmental Regulation of Human γ-Globin Genes in Transgenic Mice

, , &
Pages 7636-7644 | Received 25 Jun 1993, Accepted 26 Aug 1993, Published online: 31 Mar 2023

References

  • Baron, M. H., and T. Maniatis. 1986. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell 46:591–602.
  • Behringer, R. R., T. M. Ryan, R. D. Palmiter, R. L. Brinster, and T. M. Townes. 1990. Human γ to β-globin gene switching in transgenic mice. Genes Dev. 4:380–389.
  • Catala, F., E. deBoer, G. Habets, and F. Grosveld. 1989. Nuclear protein factors and erythroid transcription of the human Aγ-globin gene. Nucleic Acids Res. 17:3811–3827.
  • Chada, K., J. Magram, and F. Costantini. 1986. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature (London) 319:685–689.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation of by acid guanidinium thiocyanate-phenol-chlo-roform extraction. Anal. Biochem. 162:156–159.
  • Collins, F. S., J. E. Metherall, M. Yamakawa, J. Pan, S. M. Weissman, and B. G. Forget. 1985. A point mutation in the Aγ-globin gene promoter in Greek hereditary persistence of fetal haemoglobin. Nature (London) 313:325–326.
  • Collins, F. S., C. J. Stoeckert, Jr., and G. R. Serjeant. 1984. Gγβ+ hereditary persistence of fetal hemoglobin: cosmid cloning and identification of a specific mutation 5′ to the Gγ gene. Proc. Natl. Acad. Sci. USA 81:4894–4898.
  • Costa, F. F., M. A. Zago, and G. Cheng. 1990. The Brazilian type of nondeletional Aγ-fetal hemoglobin has a C→G substitution at nucleotide -195 of the Aγ-globin gene. Blood 76:1896.
  • Costantini, F., G. Radice, J. Magram, G. Stamatoyannopoulos, T. Papaynnopoulou, and K. Chada. 1985. Developmental regulation of human globin genes in transgenic mice. Cold Spring Harbor Symp. Quant. Biol. 50:361–370.
  • Curtin, P., M. Pirastu, Y. W. Kan, J. A. Gobert-Jones, A. D. Stephens, and H. Lehmann. 1985. A distant deletion affects β-globin gene function in an atypical γδβ-thalassemia. J. Clin. Invest. 76:1554–1558.
  • Dillon, N., and F. Grosveld. 1991. Human γ-globin genes silenced independently of other genes in the β-globin locus. Nature (London) 350:252–254.
  • Driscoll, C., C. S. Dobkin, and B. P. Alter. 1989. γδβ-thalassemia due to a de novo mutation deleting the 5′ β-globin locus activating region hypersensitive sites. Proc. Natl. Acad. Sci. USA 86:7470–7474.
  • Enver, T., A. J. Ebens, W. C. Forrester, and G. Stamatoyannopoulos. 1989. The human β-globin locus activation region alters the developmental fate of a human fetal globin gene in transgenic mice. Proc. Natl. Acad. Sci. USA 86:7033–7037.
  • Enver, T., N. Raich, A. J. Ebens, T. Papayannopoulou, F. Costantini, and G. Stamatoyannopoulos. 1990. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature (London) 344:309–313.
  • Felsenfeld, G.%% 1992. Chromatin as an essential part of the transcriptional mechanism. Nature (London) 355:219–224.
  • Forrester, W. C., E. Epner, M. C. Driscoll, T. Enver, M. Brice, T. Papayannopoulou, and M. Groudine. 1990. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev. 4:1637–1649.
  • Forrester, W. C., S. Takegawa, T. Papayannopoulou, G. Stamatoyannopoulos, and M. Groudine. 1987. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin expressing hybrids. Nucleic Acids Res. 15:10159–10177.
  • Forrester, W. C., C. Thompson, J. T. Elder, and M. Groudine. 1986. A developmentally stable chromatin structure in the human β-globin gene cluster. Proc. Natl. Acad. Sci. USA 83:1359–1363.
  • Forrester, W. C., U. Novak, R. Gelinas, and M. Groudine. 1989. Molecular analysis of the human β-globin locus activation region. Proc. Natl. Acad. Sci. USA 86:5439–5443.
  • Fraser, P., J. Hurst, P. Collis, and F. Grosveld. 1990. DNasel hypersensitive sites 1, 2 and 3 of the human β-globin dominant control region direct position-independent expression. Nucleic Acids Res. 18:3503–3508.
  • Fucharoen, S., K. Shimizu, and Y. Fukumaki. 1990. A novel C-T transition within the distal CCAAT motif of the Gγ-globin gene in the Japanese HPFH: implication of factor binding in elevated fetal globin expression. Nucleic Acids Res. 18:5245–5253.
  • Gelinas, R., M. Bender, and C. Lotshaw. 1986. Chinese Aγ fetal hemoglobin: C to T substitution at position -196 of the Aγ gene promoter. Blood 67:1777.
  • Gelinas, R., B. Endlich, C. Pfeiffer, M. Yagi, and G. Stamatoyannopoulos. 1985. G to A substitution in the distal CCAAT box of the Aγ-globin gene in Greek hereditary persistence of fetal haemoglobin. Nature (London) 313:323–325.
  • Giglioni, B., C. Casini, R. Mantovani, S. Merli, P. Comi, S. Ottolenghi, G. Saglio, C. Camaschella, and U. Mazza. 1984. A molecular study of a family with Greek hereditary persistence of fetal hemoglobin and β-thalassemia. EMBO J. 3:2641–2645.
  • Gilman, J. G., and T. H. J. Huisman. 1985. DNA sequence variation associated with elevated fetal Gγ globin production. Blood 66:783–787.
  • Gilman, J. G., N. Mishima, X. J. Wen, F. Kutlar, and T. H. J. Huisman. 1988. Upstream promoter mutation associated with modest elevation of fetal hemoglobin expression in human adults. Blood 72:78–81.
  • Gilman, J. G., N. Mishima, X. J. Wen, T. A. Stoming, J. Lobel, and T. H. J. Huisman. 1988. Distal CCAAT box deletion in the Aγ globin gene of two black adolescents with elevated fetal Aγ globin. Nucleic Acids Res. 18:10635–10642.
  • Grosveld, F., G. B. van Assendelft, D. R. Greaves, and G. Kollias. 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51:975–985.
  • Gumucio, D. L., H. Heilstedt-Williamson, T. A. Gray, S. A. Tarle, D. A. Shelton, D. A. Tagle, J. L. Slightom, M. Goodman, and F. S. Collins. 1992. Phylogenetic footprinting reveals a nuclear protein which binds to silencer sequences in the human γ to ∊ globin genes. Mol. Cell. Biol. 12:4919–4929.
  • Jane, S. M., D. L. Gumucio, P. A. Ney, J. M. Cunningham, and A. W. Nienhuis. 1993. Methylation-enhanced binding of Spl to the stage selector element of the human γ-globin gene promoter may regulate developmental specificity of expression. Mol. Cell. Biol. 13:3272–3281.
  • Jane, S. M., P. A. Ney, E. F. Vanin, D. L. Gumucio, and A. W. Nienhuis. 1992. Identification of a stage selector element in the human γ-globin gene promoter that fosters preferential interaction with the 5′ HS2 enhancer when in competition with the β-promoter. EMBO J. 11:2961–2969.
  • Kioussis, D., E. Vanin, T. deLange, R. A. Flavell, and F. G. Grosveld. 1983. β-Globin gene inactivation by DNA translocation in γβ-thalassemia. Nature (London) 306:662–666.
  • Kollias, G., N. Wrighton, J. Hurst, and F. Grosveld. 1986. Regulated expression of human Aγ-, β-, and hybrid γβ-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell 46:89–94.
  • Lloyd, J. A., J. M. Krakowsky, S. C. Crable, and J. B. Lingrel. 1992. Human γ- to β-globin gene switching using a mini construct in transgenic mice. Mol. Cell. Biol. 12:1561–1567.
  • Ottolenghi, S., R. Nicolis, R. Taramelli, N. Malgaretti, R. Mantovani, P. Comi, B. Giglioni, M. Longinotti, F. Dore, L. Oggiano, P. Pistidda, A. Serra, C. Camaschella, and G. Saglio. 1988. Sardinian Gγ-HPFH: a T→C substitution in a conserved “octamer” sequence in the Gγ-globin promoter. Blood 71:815–817.
  • Perez-Stable, C., and F. Costantini. 1990. Role of fetal Gγ-globin promoter elements and the adult β-globin 3′ enhancer in the stage-specific expression of globin genes. Mol. Cell. Biol. 10: 1116–1125.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Stamatoyannopoulos, G., and A. W. Nienhuis. 1993. Hemoglobin switching, p. 107-155. In G. Stamatoyannopoulos, A. W. Nienhuis, P. W. Majerus, and H. Varmus (ed.), The molecular basis of blood diseases. The W. B. Saunders Co., Philadelphia.
  • Stoming, T. A., G. S. Stoming, K. D. Lanclos, and P. E. Nute. 1989. An Aγ type of nondeletional hereditary persistence of fetal hemoglobin with a T→C mutation at position -175 to the cap site of the Aγ globin gene. Blood 73:329–333.
  • Surrey, S., K. Delgrosso, P. Malladi, and E. Schwartz. 1988. A single-base change at position -175 in the 5′-flanking region of the Gγ-globin gene from black with Gγ-p+ HPFH. Blood 71:807–810.
  • Tate, V. E., W. G. Wood, and D. J. Weatherall. 1986. The British form of hereditary persistence of fetal hemoglobin results from a single base pair mutation adjacent to an SI hypersensitive site 5′ to the Aγ globin gene. Blood 68:1389–1393.
  • Tuan, D., W. Solomon, Q. Li, and I. M. London. 1985. The “β-like-globin” gene domain in human erythroid cell. Proc. Natl. Acad. Sci. USA 82:6384–6388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.