6
Views
17
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cloning of a Novel, Ubiquitously Expressed Human Phosphatidylinositol 3-Kinase and Identification of Its Binding Site on p85

, , &
Pages 7677-7688 | Received 14 Jul 1993, Accepted 24 Sep 1993, Published online: 31 Mar 2023

References

  • Auger, K. R., C. L. Carpenter, L. C. Cantley, and L. Varticov-ski. 1989. Phosphatidylinositol 3-kinase and its novel product, phosphatidylinositol 3-phosphate, are present in Saccharomyces cerevisiae. J. Biol. Chem. 264:20181–20184.
  • Auger, K. R., L. A. Serunian, S. P. Soltoff, P. Libby, and L. C. Cantley. 1989. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175.
  • Backer, J. M., M. G. Myers, Jr., S. E. Shoelson, D. J. Chin, X.-J. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, J. Schlessinger, and M. F. White. 1992. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11:3469–3479.
  • Berridge, M. J. 1993. Inositol trisphosphate and calcium signalling. Nature (London) 361:315–325.
  • Cantley, L. C., K. R. Auger, C. Carpenter, B. Duckworth, A. Graziani, R. Kapeller, and S. Soltoff. 1991. Oncogenes and signal transduction. Cell 64:281–302.
  • Carpenter, C., and L. Cantley. Personal communication.
  • Carpenter, C. L., K. R. Auger, M. Chanudhuri, M. Yoakim, B. Schaffhausen, S. Shoelson, and L. C. Cantley. 1993. Phospho-inositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J. Biol. Chem. 268: 9478–9478.
  • Carpenter, C. L., K. R. Auger, B. C. Duckworth, W.-M. Hou, B. Schaffhausen, and L. C. Cantley. 1993. A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity. Mol. Cell. Biol. 13:1657–1665.
  • Carpenter, C. L., B. C. Duckworth, K. R. Auger, B. Cohen, B. S. Schaffhausen, and L. C. Cantley. 1990. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem. 265:19704–19711.
  • Carter, A. N., and C. P. Downes. 1992. Phosphatidylinositol 3-kinase is activated by nerve growth factor and epidermal growth factor in PC12 cells. J. Biol. Chem. 267:14563–14567.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Cohen, B., Y. Liu, B. Druker, T. M. Roberts, and B. S. Schaffhausen. 1990. Characterization of pp85, a target of oncogenes and growth factor receptors. Mol. Cell. Biol. 10:2909–2915.
  • Cooper, J. A., and A. Kashishian. 1993. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase. Mol. Cell. Biol. 13:1737–1745.
  • Corey, S., A. Eguinoa, K. Puyana-Theall, J. B. Bolen, L. Cantley, F. Mollinedo, T. R. Jackson, P. T. Hawkins, and L. R. Stephens. 1993. Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 30H-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J. 12:2681–2690.
  • Coughlin, S. R., J. A. Escobedo, and L. T. Williams. 1989. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 243:1191–1194.
  • Courtneidge, S. A., and A. Heber. 1987. An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 50:1031–1037.
  • Devereaux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Escobedo, J. A., S. Navankasattusas, W. M. Kavanaugh, D. Milfay, V. A. Fried, and L. T. Williams. 1991. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF β-receptor. Cell 65:75–82.
  • Fantl, W. J., J. A. Escobedo, G. A. Martin, C. W. Turck, M. del Rosario, F. McCormick, and L. T. Williams. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69: 413–423.
  • Field, J., J.-I. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. A. Wilson, R. A. Lerner, and M. Wigler. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8:2159–2165.
  • Hawkins, P. T., T. R. Jackson, and L. R. Stephens. 1992. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature (London) 358: 157–159.
  • Herman, P. K., and S. D. Emr. 1990. Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 6742–6754.
  • Hiles, I. D., M. Otsu, S. Volinia, M. J. Fry, I. Gout, R. Dhand, G. Panayotou, F. Ruiz-Larrea, A. Thompson, N. F. Totty, J. J. Hsuan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield. 1992. Phosphatidylinositol 3-kinase: structure and expression of the HOkd catalytic subunit. Cell 70:419–429.
  • Hu, P., B. Margolis, E. Y. Skolnik, R. Lammers, A. Ullrich, and J. Schlessinger. 1992. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol. Cell. Biol. 12:981–990.
  • Jackson, T. R., L. R. Stephens, and P. T. Hawkins. 1992. Receptor specificity of growth factor-stimulated synthesis of 3-phosphorylated inositol lipids in Swiss 3T3 cells. J. Biol. Chem. 267:16627–16636.
  • Kaplan, D. R., M. Whitman, B. Schaffhausen, D. C. Pallas, M. White, L. Cantley, and T. M. Roberts. 1987. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50:1021–1029.
  • Kaplan, D. R., M. Whitman, B. Schaffhausen, L. Raptis, R. L. Garcea, D. Pallas, T. M. Roberts, and L. Cantley. 1986. Phosphatidylinositol metabolism and polyoma-mediated transformation. Proc. Natl. Acad. Sci. USA 83:3624–3628.
  • Kavanaugh, W. M., A. Klippel, J. A. Escobedo, and L. T. Williams. 1992. Modification of the 85-kilodalton subunit of phosphatidylinositol-3 .kinase in platelet-derived growth factor-stimulated cells. Mol. Cell. Biol. 12:3415–3424.
  • Kazlauskas, A., A. Kashishian, J. A. Cooper, and M. Valius. 1992. GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor β subunit. Mol. Cell. Biol. 12:2534–2544.
  • Klippel, A., J. A. Escobedo, W. J. Fantl, and L. T. Williams. 1992. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor β receptor. Mol. Cell. Biol. 12:1451–1459.
  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229–241.
  • Kucera, G. L., and S. E. Rittenhouse. 1990. Human platelets form 3-phosphorylated phosphoinositides in response to a-thrombin, U46619, or GTPγS. J. Biol. Chem. 265:5345–5348.
  • Kunz, J., R. Henriquez, U. Schneider, M. Deuter-Reinhard, N. Rao Mowa, and M. N. Hall. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73:585–596.
  • Lavan, B. E., M. R. Kuhné, C. W. Garner, D. Anderson, M. Reedijk, T. Pawson, and G. E. Lienhard. 1992. The association of insulin-elicited phosphotyrosine proteins with src homology 2 domains. J. Biol. Chem. 267:11631–11636.
  • Ling, L. E., B. J. Druker, L. C. Cantley, and T. M. Roberts. 1992. Transformation-defective mutants of polyomavirus middle T antigen associate with phosphatidylinositol 3-kinase (PI 3-kinase) but are unable to maintain wild-type levels of PI 3-kinase products in intact cells. J. Virol. 66:1702–1708.
  • Lips, D. L., P. W. Majerus, F. R. Gorga, A. T. Young, and T. L. Benjamin. 1989. Phosphatidylinositol 3-phosphate is present in normal and transformed fibroblasts and is resistant to hydrolysis by bovine brain phospholipase C II. J. Biol. Chem. 264:8759–8763.
  • Macara, I. G., G. V. Marinetti, and P. C. Balduzzi. 1984. Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tumor-igenesis. Proc. Natl. Acad. Sci. USA 81:2728–2732.
  • McGlade, C. J., C. Ellis, M. Reedyk, D. Anderson, G. Mbamalu, A. D. Reith, G. Panayotou, P. End, A. Bernstein, A. Kazlauskas, M. D. Waterfield, and T. Pawson. 1992. SH2 domains of the p85a subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors. Mol. Cell. Biol. 12:991–997.
  • Morgan, S. J., A. D. Smith, and P. J. Parker. 1990. Purification and characterization of bovine brain type I phosphatidylinositol kinase. Eur. J. Biochem. 191:761–767.
  • Myers, M. G., Jr., J. M. Backer, X. J. Sun, S. Shoelson, P. Hu, J. Schlessinger, M. Yoakim, B. Schaffhausen, and M. F. White. 1992. IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA 89:10350–10354.
  • Otsu, M., I. Hiles, I. Gout, M. J. Fry, F. Ruiz-Larrea, G. Panayotou, A. Thompson, R. Dhand, J. Hsuan, N. Totty, A. D. Smith, S. J. Morgan, S. A. Courtneidge, P. J. Parker, and M. D. Waterfield. 1991. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 65:91–104.
  • Panayotou, G., B. Bax, I. Gout, M. Federwisch, B. Wroblowski, R. Dhand, M. J. Fry, T. L. Blundell, A. Wollmer, and M. D. Waterfield. 1992. Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes. EMBO J. 11:4261–4272.
  • Reedyk, M., X. Liu, P. van der Geer, K. Letwin, M. D. Waterfield, T. Hunter, and T. Pawson. 1992. Tyr721 regulates specific binding of the CSF-1 receptor kinase insert to PI 3′-kinase SH2 domains: a model for SH2-mediated receptor-target interactions. EMBO J. 11:1365–1372.
  • Remillard, B., R. Petrillo, W. Maslinski, M. Tsudo, T. B. Strom, L. Cantley, and L. Varticovski. 1991. Interleukin-2 receptor regulates activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 266:14167–14170.
  • Ruderman, N. B., R. Kapeller, M. F. White, and L. C. Cantley. 1990. Activation of phosphatidylinositol 3-kinase by insulin. Proc. Natl. Acad. Sci. USA 87:1411–1415.
  • Schu, P. V., K. Takegawa, M. J. Fry, J. H. Stack, M. D. Waterfield, and S. D. Emr. 1993. Phosphatidylinositol 3-kinase encoded by yeast FP534 gene essential for protein sorting. Science 260:88–91.
  • Serunian, L. A., K. R. Auger, T. M. Roberts, and L. C. Cantley. 1990. Production of novel polyphosphoinositides in vivo is linked to cell transformation by polyomavirus middle T antigen. J. Virol. 64:4718–4725.
  • Serunian, L. A., M. T. Haber, T. Fukui, J. W. Kim, S. G. Rhee, J. M. Lowenstein, and L. C. Cantley. 1989. Polyphosphoinositides produced by phosphatidylinositol 3-kinase are poor substrates for phospholipases C from rat liver and bovine brain. J. Biol. Chem. 264:17809–17815.
  • Shibasaki, F., Y. Homma, and T. Takenawa. 1991. Two types of phosphatidylinositol 3-kinase from bovine thymus. J. Biol. Chem. 266:8108–8114.
  • Shoelson, S. E., M. Sivaraja, K. P. Williams, P. Hu, J. Schlessinger, and M. A. Weiss. 1993. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation. EMBO J. 12:795–802.
  • Skolnik, E. Y., B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger. 1991. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65:83–90.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione 5-transferase. Gene 67:31–40.
  • Soltoff, S. P., S. L. Rabin, L. C. Cantley, and D. R. Kaplan. 1992. Nerve growth factor promotes the activation of phosphatidylinositol 3-kinase and its association with the trk tyrosine kinase. J. Biol. Chem. 267:17472–17477.
  • Stephens, L. R., K. T. Hughes, and R. F. Irvine. 1991. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature (London) 351:33–39.
  • Sugimoto, Y., M. Whitman, L. C. Cantley, and R. L. Erikson. 1984. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglyc-erol. Proc. Natl. Acad. Sci. USA 81:2117–2121.
  • Traynor-Kaplan, A. E., A. L. Harris, B. L. Thompson, P. Taylor, and L. A. Sklar. 1988. An inositol tetrakisphosphate-containing phospholipid in activated neutrophils. Nature (London) 334:353–356.
  • Traynor-Kaplan, A. E., B. L. Thompson, A. L. Harris, P. Taylor, G. M. Omann, and L. A. Sklar. 1989. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils. J. Biol. Chem. 264:15668–15673.
  • Tyers, M., G. Tokiwa, R. Nash, and B. Futcher. 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1773–1784.
  • Ulug, E. T., P. T. Hawkins, M. R. Hanley, and S. A. Courtneidge. 1990. Phosphatidylinositol metabolism in cells transformed by polyomavirus middle T antigen. J. Virol. 64:3895–3904.
  • Valius, M., and A. Kazlauskas. 1993. Phospholipase C-γ1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 73:321–334.
  • Varticovski, L., G. Q. Daley, P. Jackson, D. Baltimore, and L. C. Cantley. 1991. Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants. Mol. Cell. Biol. 11: 1107–1113.
  • Varticovski, L., B. Druker, D. Morrison, L. Cantley, and T. Roberts. 1989. The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature (London) 342:699–702.
  • Vennström, B., and J. M. Bishop. 1982. Isolation and characterization of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus. Cell 28:135–143.
  • Whitman, M., C. P. Downes, M. Keeler, T. Keller, and L. Cantley. 1988. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature (London) 332:644–646.
  • Whitman, M., D. Kaplan, T. Roberts, and L. Cantley. 1987. Evidence for two distinct phosphatidylinositol kinases in fibroblasts. Biochem. J. 247:165–174.
  • Whitman, M., D. R. Kaplan, B. Schaffhausen, L. Cantley, and T. M. Roberts. 1985. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature (London) 315:239–242.
  • Yu, J.-C., M. A. Heidaran, J. H. Pierce, J. S. Gutkind, D. Lombardi, M. Ruggiero, and S. A. Aaronson. 1991. Tyrosine mutations within the a platelet-derived growth factor receptor kinase insert domain abrogate receptor-associated phosphatidylinositol-3 kinase activity without affecting mitogenic or che-motactic signal transduction. Mol. Cell. Biol. 11:3780–3785.
  • Zippel, R., E. Sturani, L. Toschi, L. Naldini, L. Alberghina, and P. M. Comoglio. 1986. In vivo phosphorylation and dephosphorylation of the platelet-derived growth factor receptor studied by immunoblot analysis with phosphotyrosine antibodies. Biochim. Biophys. Acta 881:54–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.