1
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Premature Termination of Tubulin Gene Transcription in Xenopus Oocytes is Due to Promoter-Dependent Disruption of Elongation

&
Pages 7925-7934 | Received 09 Jul 1993, Accepted 20 Sep 1993, Published online: 31 Mar 2023

References

  • Bender, T. P., C. B. Thompson, and W. M. Kuehl. 1987. Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation. Science 237:1473–1476.
  • Bengal, E., O. Flores, A. Krauskopf, D. Reinberg, and Y. Aloni. 1991. Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II. Mol. Cell. Biol. 11:1195–1206.
  • Bentley, D. L., and M. Groudine. 1986. A block to elongation is largely responsible for decreased transcription of cc-myc in differentiated HL60 cells. Nature (London) 321:702–706.
  • Bentley, D. L., and M. Groudine. 1988. Sequence requirements for premature termination of transcription in the human cc-myc gene. Cell 53:245–256.
  • Bucher, P.%% 1990. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J. Mol. Biol. 212:563–578.
  • Burton, Z. F., M. Killeen, M. Sopta, L. G. Ortolan, and J. Greenblatt. 1988. RAP 30/74: a general initiation factor that binds to RNA polymerase II. Mol. Cell. Biol. 8:1602–1613.
  • Chafin, D. R., T. J. Claussen, and D. H. Price. 1991. Identification and purification of a yeast protein which affects elongation by RNA polymerase II. J. Biol. Chem. 266:9256–9262.
  • Cullen, B. R.%% 1990. The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell 63:655–657.
  • Cullen, B. R.%% 1993. Does HIV-1 Tat induce a change in viral initiation rites? Cell 73:417–420.
  • Eick, D., and G. W. Bornkamm. 1986. Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression. Nucleic Acids Res. 14:8331–8346.
  • Flores, O., E. Maldonado, and D. Reinberg. 1989. Factors involved in specific transcription by mammalian RNA polymerase II. Factors HE and IIF independently interact with RNA polymerase II. J. Biol. Chem. 264:8913–8921.
  • Fort, P., J. Rech, A. Vie, M. Piechaczyck, A. Bonnieu, P. Jeanteur, and J.-M. Blanchard. 1987. Regulation of c-fos gene expression in hamster fibroblasts: initiation and elongation of transcription and mRNA degradation. Nucleic Acids Res. 15: 5657–5667.
  • Hair, A., and G. T. Morgan. Unpublished data.
  • Jones, K. E., and G. T. Morgan. Unpublished data.
  • Kao, S.-Y., A. F. Caiman, P. A. Luciw, and B. M. Peterlin. 1987. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature (London) 330:489–493.
  • Kash, S. F., J. W. Innis, A. U. Jackson, and R. E. Kellems. 1993. Functional analysis of a stable transcription arrest site in the first intron of the murine adenosine deaminase gene. Mol. Cell. Biol. 13:2718–2729.
  • Kerppola, T. K., and C. M. Kane. 1991. RNA polymerase: regulation of transcript elongation and termination. FASEB J. 5:2833–2842.
  • Krumm, A., T. Meulia, M. Brunvand, and M. Groudine. 1992. The block to transcription elongation within the human cc-myc gene is determined in the promoter-proximal region. Genes Dev. 6:2201–2213.
  • Laspia, M. F., A. P. Rice, and M. B. Mathews. 1989. HIV-1 protein increases transcriptional initiation and stabilises elongation. Cell 59:283–292.
  • Marshall, N. F., and D. H. Price. 1992. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell. Biol. 12:2078–2090.
  • Meulia, T., A. Knimm, and M. Groudine. 1993. Distinct properties of cc-myc transcriptional elongation are revealed in enopus oocytes and mammalian cells and by template titration, 5,6-dichloro-l-β-D-ribofuranosylbenzimidazole (DRB), and promoter mutagenesis. Mol. Cell. Biol. 13:5647–5658.
  • Middleton, K. M., and G. T. Morgan. 1989. An oocyte-expressed a-tubulin gene in Xenopus laevis; sequences required for the initiation of transcription. Nucleic Acids Res. 17:5041–5055.
  • Middleton, K. M., and G. T. Morgan. 1990. Premature termination of transcription can be induced on an injected a-tubulin gene in Xenopus oocytes. Mol. Cell. Biol. 10:727–735.
  • Miller, H., C. Asselin, D. Dufort, J.-Q. Yang, K. Gupta, K. B. Marcu, and A. Nepveu. 1989. A cis-acting element in the promoter region of the murine c-myc gene is necessary for the transcription block. Mol. Cell. Biol. 9:5340–5349.
  • Mok, M., A. Maderious, and S. Chen-Kiang. 1984. Premature termination by human RNA polymerase II occurs temporally in the adenovirus major late transcription unit. Mol. Cell. Biol. 4:2031–2040.
  • Morgan, G. T. Unpublished data.
  • Nepveu, A., and K. Marcu. 1986. Intragenic pausing and antisense transcription within the murine c-myc locus. EMBO J. 5:2859–2865.
  • Price, D. H., A. E. Sluder, and A. L. Greenleaf. 1986. Fractionation of transcription factors for RNA polymerase II from Drosophila Kc. cell nuclear extracts. J. Biol. Chem. 262:3244–3255.
  • Pugh, B. F., and R. Tjian. 1992. Diverse transcriptional functions of the multisubunit eukaryotic TFIID complex. J. Biol. Chem. 267:679–682.
  • Ramamurthy, V., M.-C. Maa, M. L. Harless, D. A. Wright, and R. E. Kellems. 1990. Sequence requirements for transcriptional arrest in exon 1 of the murine adenosine deaminase gene. Mol. Cell. Biol. 10:1484–1491.
  • Ratnasabapathy, R., M. Sheldon, L. Johal, and N. Hernandez. 1990. The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters. Genes Dev. 4:2061–2074.
  • Reinberg, D., and R. G. Roeder. 1987. Factors involved in specific transcription by mammalian RNA polymerase I. Transcription factor IIS stimulates elongation of RNA chains. J. Biol. Chem. 262:3331–3337.
  • Reines, D., M. J. Chamberlin, and C. M. Kane. 1989. Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J. Biol. Chem. 264:10799–10809.
  • Reznikov, O., M. Kessler, and Y. Aloni. 1989. RNA secondary structure is an integral part of the in vitro mechanism of attenuation in simian virus 40. J. Biol. Chem. 264:9953–9959.
  • Rougvie, A. E., and J. T. Lis. 1988. The RNA polymerase II molecule at the 5′ end of the uninduced hsp 70 gene of D. melanogaster is transcriptionally engaged. Cell 54:795–804.
  • Selby, M. J., E. S. Bain, P. A. Luciw, and B. M. Peterlin. 1989. Structure, sequence and the position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev. 3:547–558.
  • Sheldon, M., R. Ratnasabapathy, and N. Hernandez. 1993. Characterization of the inducer of short transcripts, a human immunodeficiency virus type 1 transcriptional element that activates the synthesis of short RNAs. Mol. Cell. Biol. 13:1251–1263.
  • Spencer, C. A., and M. Groudine. 1990. Transcription elongation and eukaryotic gene regulation. Oncogene 5:777–785.
  • Spencer, C. A., and M. A. Kilvert. 1993. Transcription elongation in the human c-myc gene is governed by overall transcription levels in Xenopus oocytes. Mol. Cell. Biol. 13:1296–1305.
  • Spencer, C. A., R. C. LeStrange, U. Novak, W. S. Hayward, and M. Groudine. 1990. The block to transcription elongation is promoter dependent in normal and Burkitt’s lymphoma c-myc alleles. Genes Dev. 4:75–88.
  • Strobl, L. J., and D. Eick. 1992. Hold back of RNA polymerase II at the transcription start site mediates down-regulation of c-myc in vivo. EMBO J. 11:3307–3314.
  • Wiley, S. R., R. J. Kraus, and J. E. Mertz. 1992. Functional binding of the “TATA” box binding component of transcription factor TFIID to the -30 region of TATA-less promoters. Proc. Natl. Acad. Sci. USA 89:5814–5818.
  • Wright, S., and J. M. Bishop. 1989. DNA sequences that mediate attenuation of transcription from the mouse protooncogene c-myc. Proc. Natl. Acad. Sci. USA 86:505–509.
  • Wright, S., L. F. Mirels, M. C. B. Calayag, and J. M. Bishop. 1991. Premature termination of transcription from the PI promoter of the mouse c-myc gene. Proc. Natl. Acad. Sci. USA 88:11383–11387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.