0
Views
5
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A New Serum-Responsive, Cardiac Tissue-Specific Transcription Factor That Recognizes the MEF-2 Site in the Myosin Light Chain-2 Promoter

, , &
Pages 1222-1231 | Received 07 Feb 1992, Accepted 20 Nov 1992, Published online: 01 Apr 2023

References

  • Borras, T., C. A. Peterson, and J. Piatigorsky. 1988. Evidence for positive and negative regulation in the promoter of the chicken 1-crystallin gene. Dev. Biol. 127:209–219.
  • Boxer, L. Μ., R. Prywes, R. G. Roeder, and L. Kedes. 1989. The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor. Mol. Cell. Biol. 9:515–522.
  • Braun, T., E. Bober, B. Winter, N. Rosenthal, and H. H. Arnold. 1990. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 9:821–831.
  • Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701–709.
  • Braun, T., E. Tannich, G. Buschhausen-Denker, and H. H. Arnold. 1989. Promoter upstream elements of the chicken cardiac myosin light-chain 2-A gene interact with trans-acting regulatory factors for muscle-specific transcription. Mol. Cell. Biol. 9:2513–2525.
  • Brennan, T. J., D. G. Edmondson, L. Li, and E. N. Olson. 1991. Transforming growing factor β represses the actions of myogenin through a mechanism independent of DNA binding. Proc. Natl. Acad. Sci. USA 88:3822–3826.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640.
  • Clegg, C. H., T. A. Linkhart, B. B. Olwin, and S. D. Hauschka. 1987. Growth factor control of skeletal muscle differential: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J. Cell. Biol. 105:949–956.
  • Cserjesi, P., and E. N. Olson. 1991. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol. Cell. Biol. 11:4854–4862.
  • Davis, R. L., H. Weintraub, and A. B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000.
  • Dignam, J. D., R. Μ. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1474–1489.
  • Edmondson, D. G., and E. N. Olson. 1989. A gene with homology to the myc similarity region of myoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 3:628–640.
  • Eghbali, Μ., R. Tomek, C. Woods, and B. Bhanbi. 1991. Cardiac fibroblasts are predisposed to convert into myocyte phenotype: specific effect of transforming growth factor β. Proc. Natl. Acad. Sci. USA 88:795–799.
  • Emerson, C. D., D. Fischman, B. Nadal-Ginard, and Μ. A. Q. Siddiqui. 1986. Molecular biology of muscle development. Alan R. Liss, New York.
  • Flink, I. L., and E. Morkin. 1990. Interaction of thyroid receptors with strong and weak cis-acting elements in the human α-myosin heavy chain gene promoter. J. Biol. Chem. 265:11233–11237.
  • Gorman, C. Μ., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gossett, L. A., D. J. Kelvin, E. A. Sternberg, and E. N. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033.
  • Gupta, Μ. P., Μ. Gupta, R. Zak, and V. P. Sukhatme. 1991. Egr-1, a serum-inducible zinc finger protein, regulates transcription of the rat cardiac α-myosin heavy chain gene. J. Biol. Chem. 266:12813–12816.
  • Gustafson, T. A., and L. Kedes. 1989. Identification of multiple proteins that interact with functional regions of the human cardiac α-actin promoter. Mol. Cell. Biol. 9:3269–3283.
  • Horlick, R. A., and P. A. Benfield. 1989. The upstream musclespecific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol. Cell. Biol. 9:2396–2413.
  • Horlick, R. A., G. Μ. Hobson, J. H. Patterson, Μ. T. Mitchell, and P. A. Benfield. 1990. Brain and muscle creatine kinase genes contain common TA-rich recognition protein-binding regulatory elements. Mol. Cell. Biol. 10:4826–4836.
  • Iannello, R. C., J. H. Mar, and C. P. Ordahl. 1991. Characterization of a promoter element required for regulation in myocardial cells. J. Biol. Chem. 266:3309–3316.
  • Izumo, S., and V. Mahdavi. 1988. Thyroid hormone receptor a isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature (London) 334:539–542.
  • Kelvin, D. J., G. Simard, H. H. Tai, T. P. Yamaguchi, and J. A. Connolly. 1989. Growth factors, signal pathway, and the regulation of proliferation and differentiation in BC3H1 muscle cells. I. A. Pertussis toxin-sensitive is involved. J. Cell Biol. 108:159–168.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequence specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831.
  • Lee, T.-C., K.-L. Chow, P. Fang, and R. J. Schwartz. 1991. Activation of skeletal α-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Mol. Cell. Biol. 11:5090–5100.
  • Lompre, A., N. Bernardo, and V. Mahdavi. 1984. Expression of the ventricular α- and β-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 209:6437–6446.
  • Miner, J. H., and B. Wold. 1990. Herculin, a fourth member of the myoD family of myogenic regulatory genes. Proc. Natl. Acad. Sci. USA 87:1089–1093.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Miwa, T., and L. Kedes. 1987. Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human α-cardiac actin gene. Mol. Cell. Biol. 7:2803–2813.
  • Muscat, G. E. O., T. A. Gustafson, and L. Kedes. 1988. A common factor regulates skeletal and cardiac α-actin gene transcription in muscle. Mol. Cell. Biol. 8:4120–4133.
  • Nakatsuji, Y., K. Hidaka, S. Tsujino, Y. Yamamoto, T. Mukai, T. Yanagihara, T. Kishimoto, and S. Sakoda. 1992. A single MEF-2 site is a major positive regulatory element required for transcription of the muscle-specific subunit of the human phosphoglycerate mutase gene in skeletal and cardiac muscle cells. Mol. Cell. Biol. 12:4384–4390.
  • Navankasattusas, S., H. Zhu, A. V. Garcia, S. Μ. Evans, and K. R. Chien. 1992. A ubiquitous factor (HF-1a) and a distinct muscle factor (HF-1b/MEF-2) form an E-box-independent pathway for cardiac muscle gene expression. Mol. Cell. Biol. 12:1469–1479.
  • Olson, E. D. 1990. MyoD family: a paradigm for development. Genes Dev. 4:1454–1461.
  • Olson, E. H., E. Sternberg, G. Spizz, J. S. Hu, and C. Wilcox. 1986. Regulation of myogenic differentiation by type β transforming growth factor. J. Cell Biol. 103:1799–1805.
  • Pollack, R., and R. Treisman. 1991. Human SRF-related proteins DNA-binding properties and potential regulatory targets. Genes Dev. 5:2327–2341.
  • Prywes, R., A. Dutta, J. A. Cromlish, and R. G. Roeder. 1988. Phosphorylation of serum response factor, a factor that binds to the serum response elements of the c-fos enhancer. Proc. Natl. Acad. Sci. USA 85:7206–7210.
  • Qasba, P., E. Lin, Μ. D. Zhou, A. Kumar, and Μ. A. Q. Siddiqui. 1992. A single transcription factor binds to two divergent sequence elements with a common function in cardiac myosin light chain-2 promoter. Mol. Cell. Biol. 12:1107–1116.
  • Rosenthal, N. 1989. Muscle cell differentiation. Curr. Opin. Cell Biol. 1:1094–1101.
  • Schneider, Μ. D., K. Chow, R. J. Schwartz, and T. G. Parker. 1991. Growth factor control of myocardial gene transcription. J. Mol. Cell. Cardiol. 23(Suppl. III):S19.
  • Shen, R., S. K. Goswami, E. Mascareno, A. Kumar, and Μ. A. Q. Siddiqui. 1991. Tissue-specific transcription of the cardiac myosin light-chain 2 gene is regulated by an upstream repressor element. Mol. Cell. Biol. 11:1676–1685.
  • Spizz, G., J. S. Hu, and E. N. Olson. 1987. Inhibition of myogenic differentiation by fibroblast growth factor of type β transforming growth factor does not require persistent c-myc expression. Dev. Biol. 123:500–507.
  • Spizz, G., D. Roman, A. Strauss, and E. N. Olson. 1986. Serum and fibroblast growth factor inhibit myogenic differentiation through a mechanism dependent on protein synthesis and independent of cell proliferation. J. Biol. Chem. 261:9483–9488.
  • Treisman, R. 1986. Identification of a protein-binding site that mediates transcription response of the c-fos gene to serum factors. Cell 46:567–574.
  • Ueno, H., Μ. B. Perryman, R. Roberts, and Μ. D. Schneider. 1988. Differentiation of cardiac myocytes after mitogen withdrawal exhibits three sequential states of the ventricular growth response. J. Cell Biol. 107:1911–1918.
  • Uetsuki, T., Y. Nabeshima, A. Fujisawa-Sehara, and Y.-I. Nabeshima. 1990. Regulation of the chicken embryonic myosin light-chain (L23) gene: existence of a common regulatory element shared by myosin alkali light-chain genes. Mol. Cell. Biol. 10:2562–2569.
  • Waspe, L. E., C. P. Ordahl, and P. C. Simpson. 1990. The cardiac β-myosin heavy chain isogene is induced selectively in al-adrenergic receptor-stimulated hypertrophy of cultured rat heart myocytes. J. Clin. Invest. 85:1206–1214.
  • Wright, W. E. Μ., D. A. Sassoon, and V. K. Lin. 1989. Myogenin, a factor regulating myogenesis, has a domain homologous to myoD. Cell 56:607–617.
  • Yu, Y.-T., R. E. Breibart, L. B. Smoot, L. Youngsook, V. Mardavi, and B. Nadal-Ginard. 1992. Human myocyte enhancer factor 2 comprises a group of tissue restricted MAD box transcription factors. Genes Dev. 6:1783–1798.
  • Zarraga, A. Μ., K. Danishefsky, A. K. Deshpandim, D. Mendota, and Μ. A. Q. Siddiqui. 1986. Characterization of 5'-flanking region of heart myosin light chain 2A gene. J. Biol. Chem. 261:13852–13860.
  • Zhou, M., Y. Wu, Μ. Kummar, and Μ. A. Q. Siddiqui. 1992. Mechanism of tissue specific transcription: interplay between positive and negative regulatory factors. Gene Expression 2(2):127–138.
  • Zhu, H., A. V. Garcia, R. S. Ross, S. Μ. Evans, and K. R. Chien. 1991. A conserved 28-base-pair element (HF-1) in the rat cardiac myosin light-chain-2 gene confers cardiac-specific and α-adrenergic-inducible expression in cultured neonatal rat myocardial cells. Mol. Cell. Biol. 11:2273–2281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.