1
Views
8
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Characterization of the Inducer of Short Transcripts, a Human Immunodeficiency Virus type 1 Transcriptional Element That Activates the Synthesis of Short RNAs

, &
Pages 1251-1263 | Received 29 Sep 1992, Accepted 30 Nov 1992, Published online: 01 Apr 2023

References

  • Bengal, E., and Y. Aloni. 1991. Transcriptional elongation by purified RNA polymerase II is blocked at the trans-activation responsive region of human immunodeficiency virus type 1 in vitro. J. Virol. 65:4910–4918.
  • Bentley, D. L., and Μ. Grondine. 1988. Sequence requirements for premature termination of transcription in the human c-myc gene. Cell 53:245–256.
  • Berkhout, B., R. H. Silverman, and K. T. Jeang. 1989. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282.
  • Cordingley, Μ. G., R. L. LaFemina, P. L. Callahan, J. H. Condra, V. V. Sardana, D. J. Graham, T. Μ. Nguyen, K. LeGrow, L. Gotlib, A. J. Schlabach, and R. J. Colonno. 1990. Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc. Natl. Acad. Sci. USA 87:8985–8989.
  • Cullen, B. R. 1986. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46:973–982.
  • Cullen, B. R. 1990. The HIV-1 Tat protein: an RNA sequencespecific processivity factor? Cell 63:655–657.
  • Cullen, B. R. 1991. Regulation of HIV-1 expression. FASEB J. 5:2361–2368.
  • Dahlberg, J. E., and E. Lund. 1988. The genes and transcription of the major small nuclear RNAs, p. 38–70. In Μ. L. Birnstiel (ed.), Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin.
  • Delling, U., L. S. Reid, R. W. Barnett, Μ. Y.-X. Ma, S. Climie, Μ. Sumner-Smith, and N. Sonenberg. 1992. Conserved nucleotides in the TAR RNA stem of human immunodeficiency virus type 1 are critical for Tat binding and trans activation: model for TAR RNA tertiary structure. J. Virol. 66:3018–3025.
  • Dingwall, C., I. Ernberg, Μ. J. Gait, S. Μ. Green, S. Heaphy, J. Karn, A. D. Lowe, and Μ. Singh. 1989. Human immunodeficiency virus 1 tat protein binds trans-activation responsive region (TAR) RNA in vitro. Proc. Natl. Acad. Sci. USA 86:6925–6929.
  • Dingwall, C., I. Ernberg, Μ. J. Gait, S. Μ. Green, S. Heaphy, J. Karn, A. D. Lowe, Μ. Singh, and Μ. A. Skinner. 1990. HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J. 9:4145–4153.
  • Feinberg, Μ. B., D. Baltimore, and A. D. Frankel. 1991. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc. Natl. Acad. Sci. USA 88:4045–4049.
  • Feng, S., and E. C. Holland. 1988. HIV-1 tat trans-activation requires the loop sequence within tar. Nature (London) 334:165–167.
  • Frankel, A. D., and C. O. Pabo. 1988. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193.
  • Garcia, J. A., D. Harrich, E. Soultanakis, F. Wu, R. Mitsuyasu, and R. B. Gaynor. 1989. Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation. EMBO J. 8:765–778.
  • Gatignol, A., W. A. Buckler, B. Berkhourt, and K. T. Jeang. 1991. Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science 251:1597–1600.
  • Gatignol, A., A. Kumar, A. Rabson, and K.-T. Jeang. 1989. Identification of cellular proteins that bind to the human immunodeficiency virus type 1 trans-activation-response TAR element RNA. Proc. Natl. Acad. Sci. USA 86:7828–7832.
  • Gaynor, R., E. Soultanakis, Μ. Kuwabara, J. Garcia, and D. S. Sigman. 1989. Specific binding of a HeLa nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region. Proc. Natl. Acad. Sci. USA 86:4858–4862.
  • Graham, G. J., and J. J. Maio. 1990. RNA transcripts of the human immunodeficiency virus transactivation response element can inhibit action of the viral transactivator. Proc. Natl. Acad. Sci. USA 87:5817–5821.
  • Greenberg, Μ. E., and T. P. Bender. 1987. Identification of newly transcribed RNA, p. 4.10.3. In F. Μ. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology. Green Publishing Associates.
  • Hauber, J., and B. R. Cullen. 1988. Mutational analysis of the trans-activation-responsive region of the human immunodeficiency virus type I long terminal repeat. J. Virol. 62:673–679.
  • Heaphy, S., C. Dingwall, I. Ernberg, Μ. J. Gait, S. Μ. Green, J. Karn, A. D. Lowe, Μ. Singh, and Μ. A. Skinner. 1990. HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-and-loop structure located within the Rev response element. Cell 60:685–693.
  • Hernandez, N. Transcription of vertebrate snRNA genes and related genes. Cold Spring Harbor Monogr. Ser., in press.
  • Hernandez, N., and R. Lucito. 1988. Elements required for transcription initiation of the human U2 snRNA gene coincide with elements required for snRNA 3' end formation. EMBO J. 7:3125–3134.
  • Hernandez, N., and A. Μ. Weiner. 1986. Formation of the 3' end of U1 snRNA requires compatible snRNA promoter elements. Cell 47:249–258.
  • Izban, Μ. G., and D. S. Luse. 1992. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3' to 5' direction in the presence of elongation factor SII. Genes Dev. 6:1342–1356.
  • Jakobovits, A., D. H. Smith, E. B. Jakobovits, and D. J. Capon. 1988. A discrete element 3' of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans activator. Mol. Cell. Biol. 8:2555–2561.
  • Jones, K. A., P. A. Luciw, and N. Duchange. 1988. Structural arrangements of transcription control domains within the 5'-Untranslated leader regions of the HIV-I and HIV-2 promoters. Genes Dev. 2:1101–1114.
  • Kao, S. Y., A. F. Calman, P. A. Luciw, and B. Μ. Peterlin. 1987. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature (London) 330:489–493.
  • Kato, H., Μ. Horikoshi, and R. G. Roeder. 1991. Repression of HIV-1 transcription by a cellular protein. Science 251:1476–1479.
  • Kato, H., H. Sumimoto, P. Pognonec, C.-H. Chen, C. A. Rosen, and R. G. Roeder. 1992. HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes Dev. 6:655–666.
  • Kerppola, T. K., and C. Μ. Kane. 1988. Intrinsic sites of transcription termination and pausing in the c-myc gene. Mol. Cell. Biol. 8:4389–4394.
  • Kessler, M., and Μ. B. Mathews. 1991. Tat transactivation of the human immunodeficiency virus type 1 promoter is influenced by basal promoter activity and the simian virus 40 origin of DNA replication. Proc. Natl. Acad. Sci. USA 88:10018–10022.
  • Kessler, M., and Μ. B. Mathews. 1992. Premature termination and processing of human immunodeficiency virus type 1-promoted transcripts. J. Virol. 66:4488–4496.
  • Kuhn, A., and I. Grummt. 1989. 3'-end formation of mouse pre-RNA involves both transcription termination and a specific processing reaction. Genes Dev. 3:224–231.
  • Laspia, Μ. F., A. P. Rice, and Μ. B. Mathews. 1989. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–292.
  • Laspia, Μ. F., A. P. Rice, and Μ. B. Mathews. 1990. Synergy between HIV-1 Tat and adenovirus E1A is principally due to stabilization of transcriptional elongation. Genes Dev. 4:2397–2408.
  • Lisziewicz, J., J. Rappaport, and R. Dhar. 1991. Tat-regulated production of multimerized TAR RNA inhibits HIV-1 gene expression. New Biol. 3:82–89.
  • Madore, S. T., E. D. Wieben, and T. Pederson. 1984. Intracellular site of U1 small nuclear RNA processing and ribonucleoprotein assembly. J. Cell Biol. 98:188–192.
  • Malim, Μ. H., L. S. Tiley, D. F. McCarn, J. R. Rusche, J. Hauber, and B. R. Cullen. 1990. HIV-1 structural gene expression requires binding of the Rev transactivator to its RNA target sequence. Cell 60:675–683.
  • Marciniak, R. A., B. J. Calnan, A. D. Frankel, and P. A. Sharp. 1990. HIV-1 Tat protein trans-activates transcription in vitro. Cell 63:791–802.
  • Marciniak, R. A∙, B. Μ. Garcia, and P. A. Sharp. 1990. Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation response (TAR) element of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 87:3624–3628.
  • Marciniak, R. A., and P. A. Sharp. 1991. The HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J. 10:4189–4196.
  • Marshall, N. F., and D. H. Price. 1992. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell. Biol. 12:2078–2090.
  • Middleton, K. Μ., and G. T. Morgan. 1990. Premature termination of transcription can be induced on an injected α-tubulin gene in Xenopus oocytes. Mol. Cell. Biol. 10:727–735.
  • Mott, J. E., J. L. Galloway, and T. Platt. 1985. Maturation of Escherichia coli tryptophan operon mRNA: evidence for 3' exonucleolytic processing after rho-dependent termination. EMBO J. 4:1887–1891.
  • Muesing, Μ. A., D. H. Smith, and D. J. Capon. 1987. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48:691–701.
  • Neuman de Vegvar, H. E., and J. E. Dahlberg. 1990. Nucleocy-toplasmic transport and processing of small nuclear RNA precursors. Mol. Cell. Biol. 10:3365–3375.
  • Neuman de Vegvar, H. E., E. Lund, and J. E. Dahlberg. 1986. 3' end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 47:259–266.
  • Olsen, H. S., P. Nelbock, A. W. Cochrane, and C. A. Rosen. 1990. Secondary structure is the major determinant for interaction of HIV rev protein with RNA. Science 247:845–848.
  • Pavlakis, G. N., and B. K. Felber. 1990. Regulation of expression of human immunodeficiency virus. New Biol. 2:20–31.
  • Peterlin, B. Μ., P. A. Luciw, P. J. Barr, and Μ. D. Walker. 1986. Elevated levels of mRNA can account for the transactivation of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 83:9734–9738.
  • Pfeifer, K., Μ. Bachmann, H. C. Schroder, B. E. Weiler, D. Ugarkovic, T. Okamoto, and W. E. Muller. 1991. Formation of a small ribonucleoprotein particle between Tat protein and trans-acting response element in human immunodeficiency virus-infected cells. J. Biol. Chem. 266:14620–14626.
  • Ratnasabapathy, R., M. Sheldon, L. Johal, and N. Hernandez. 1990. The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters. Genes Dev. 4:2061–2074.
  • Reines, D. 1992. Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. J. Biol. Chem. 267:3795–3800.
  • Reines, D., D. Wells, Μ. J. Chamberlin, and C. Μ. Kane. 1987. Identification of intrinsic termination sites in vitro for RNA polymerase II within eukaryotic gene sequences. J. Mol. Biol. 196:299–312.
  • Romaniuk, P. J., P. Lowary, H.-N. Wu, G. Stormo, and O. C. Uhlenbeck. 1987. RNA binding site of the R17 coat protein. Biochemistry 26:1563–1568.
  • Rosen, C. A., J. G. Sodrowski, and W. A. Haseltine. 1985. The location of cis-acting regulatory sequences in the human T cell Iymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823.
  • Roy, S., U. Delling, C.-H. Chen, C. A. Rosen, and N. Sonenberg. 1990. A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev. 4:1365–1373.
  • Roy, S., N. T. Parkin, C. Rosen, J. Itovitch, and N. Sonenberg. 1990. Structural requirements for trans activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by tat: importance of base pairing, loop sequence, and bulges in the tat-responsive sequence. J. Virol. 64:1402–1406.
  • Sato, K., R. Ito, K.-H. Baek, and K. Agarwal. 1986. A specific DNA sequence controls termination of transcription in the gastrin gene. Mol. Cell. Biol. 6:1032–1043.
  • Selby, Μ. J., E. S. Bain, P. A. Luciw, and B. Μ. Peterlin. 1989. Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev. 3:547–558.
  • Selby, Μ. J., and B. Μ. Peterlin. 1990. Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62:769–776.
  • Sheldon, Μ., and N. Hernandez. Unpublished results.
  • Sheline, C. T., L. H. Milocco, and K. A. Jones. 1991. Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev. 5:2508–2520.
  • Southgate, C., and Μ. R. Green. 1991. The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: implications for Tat function. Genes Dev. 5:2496–2507.
  • Southgate, C., Μ. L. Zapp, and Μ. R. Green. 1990. Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature (London) 345:640–642.
  • Spencer, C. A., and Μ. Grondine. 1990. Transcription elongation and eukaryotic gene regulation. Oncogene 5:777–785.
  • Sullenger, B. A., H. F. Gallardo, G. E. Ungers, and E. Gilboa. 1990. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63:601–608.
  • Tanaka, Μ., and W. Herr. 1990. Differentiation transcriptional activation by Oct-I and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60:375–386.
  • Toohey, Μ. G., and K. A. Jones. 1989. In vitro formation of short RNA polymerase II transcripts that terminate within the HIV-1 and HIV-2 promoter-proximal downstream regions. Genes Dev. 3:265–282.
  • Treisman, R., Μ. R. Green, and T. Maniatis. 1983. cis and trans activation of globin gene transcription in transient assays. Proc. Natl. Acad. Sci. USA 80:7428–7432.
  • Ucker, D. S., and K. R. Yamamoto. 1984. Early events in the stimulation of mammary tumor virus RNA synthesis by glucocorticoids. Novel assays of transcription rates. J. Biol. Chem. 259:7416–7420.
  • Weeks, K. Μ., C. Ampe, S. C. Schultz, T. A. Steitz, and D. Μ. Crothers. 1990. Fragments of the HIV-1 TAT protein specifically bind TAR RNA. Science 249:1281–1285.
  • Weeks, K. Μ., and D. Μ. Crothers. 1991. RNA recognition by Tat-derived peptides: interaction in the major groove? Cell 66:577–588.
  • Wright, C. Μ., B. K. Felber, H. Paskalis, and G. N. Pavlakis. 1986. Expression and characterization of the trans-activator of HTLV-III/LAV virus. Science 234:988–992.
  • Wu, F., J. Garcia, D. Sigman, and R. Gaynor. 1991. Tat regulates binding of the human immunodeficiency virus transactivating region RNA loop-binding protein TRP-185. Genes Dev. 5:2128–2140.
  • Yarnell, W. S., and J. W. Roberts. 1992. The phage λ gene Q transcription antiterminator binds DNA in the late gene promoter as it modifies RNA polymerase. Cell 69:1181–1189.
  • Zoller, Μ., and Μ. Smith. 1982. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 10:6487–6500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.