3
Views
6
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

A 5'-3' Exonuclease From Saccharomyces cerevisiae is Required for in Vitro Recombination Between Linear DNA Molecules with Overlapping Homology

&
Pages 3125-3134 | Received 18 Nov 1992, Accepted 26 Feb 1993, Published online: 01 Apr 2023

REFERENCES

  • Alani, E., R. Padmore, and N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436.
  • Amberg, D. C., A. L. Goldstein, and C. N. Cole. 1992. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6:1173–1189.
  • Bauer, G. A., H. M. Heller, and P. M. J. Burgers. 1988. DNA polymerase III from Saccharomyces cerevisiae. J. Biol. Chem. 263:917–924.
  • Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1523.
  • Bishop, D. K., D. Park, L. Xu, and N. Kleckner. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456.
  • Burgers, P. M. J., G. A. Bauer, and L. Tam. 1988. Exonuclease V from Saccharomyces cerevisiae. J. Biol. Chem. 263:8099–8105.
  • Cao, L., E. Alani, and N. Kleckner. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in 5. cerevisiae. Cell 61:1089–1101.
  • Carroll, D., S. H. Wright, R. K. Wolf, E. Grzesiuk, and E. B. Maryon. 1986. Efficient homologous recombination of linear DNA substrates after injection into Xenopus laevis oocytes. Mol. Cell. Biol. 6:2053–2061.
  • Chow, T. Y.-K., and M. A. Resnick. 1987. Purification and characterization of an endo-exonuclease from Saccharomyces cerevisiae that is influenced by the RAD52 gene. J. Biol. Chem. 262:17659–17667.
  • Christman, M. F., F. S. Dietrich, and G. R. Fink. 1988. Mitotic recombination in the rDNA of 5. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55:413–425.
  • Dake, E., T. J. Hoffman, S. McIntire, A. Hudson, and H. P. Zassenhaus. 1988. Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae. J. Biol. Chem. 263:7691–7702.
  • Dolberg, M., C.-P. Baur, and R. Knippers. 1991. Purification and characterization of a novel 5′ exodeoxyribonuclease from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 198:783–787.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Fishman-Lobell, J., N. Rudin, and J. E. Haber. 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12:1292–1303.
  • Friedberg, E. C. 1988. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52:70–102.
  • Game, J. C., T. J. Zamb, R. J. Braun, M. Resnick, and R. M. Roth. 1980. The role of radiation (rad) genes in meiotic recombination in yeast. Genetics 94:51–68.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnson, A. W., and R. D. Kolodner. 1991. Strand exchange protein 1 from Saccharomyces cerevisiae. J. Biol. Chem. 266:14046–14054.
  • Kenna, M., A. Stevens, M. McCammon, and M. G. Douglas. 1993. An essential yeast gene with homology to the exonucle-ase-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity. Mol. Cell. Biol. 13:341–350.
  • Klein, H. L. 1988. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics 120:367–377.
  • Kohne, D. E., S. A. Levinson, and M. J. Byers. 1977. Room temperature method for increasing the rate of DNA reassociation by many thousandfold: the phenol emulsion reassociation technique. Biochemistry 16:5329–5341.
  • Lehman, C. W., and D. Carroll. 1991. Homologous recombination catalyzed by a nuclear extract from Xenopus oocytes. Proc. Natl. Acad. Sci. USA 88:10840–10844.
  • Lichten, M. J., and M. S. Fox. 1983. Detection of non-homology-containing heteroduplex molecules. Nucleic Acids Res. 11:3959–3971.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4:1020–1034.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1990. Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a nonconservative pathway that leads to crossover products. Mol. Cell. Biol. 10:103–112.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1990. Repair of doublestranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol. Cell. Biol. 10:113–119.
  • Malone, R. E., and R. E. Esposito. 1980. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc. Natl. Acad. Sci. USA 77:503–507.
  • Malone, R. E., T. Ward, S. Lin, and J. Waring. 1990. The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr. Genet. 18:111–116.
  • Maryon, E., and D. Carroll. 1989. Degradation of linear DNA by a strand-specific exonuclease activity in Xenopus laevis oocytes. Mol. Cell. Biol. 9:4862–4871.
  • Maryon, E., and D. Carroll. 1991. Involvement of singlestranded tails in homologous recombination of DNA injected into Xenopus laevis oocyte nuclei. Mol. Cell. Biol. 11:3268–3277.
  • Maryon, E., and D. Carroll. 1991. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol. Cell. Biol. 11:3278–3287.
  • Matson, S. W., and K. A. Kaiser-Rogers. 1990. DNA helicases. Annu. Rev. Biochem. 59:289–329.
  • Meselson, M. S., and C. M. Radding. 1975. A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72:358–361.
  • Nicolas, A., D. Treco, N. P. Schultes, and J. W. Szostak. 1989. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature (London) 338:35–39.
  • Ozenberger, B. A., and G. S. Roeder. 1991. A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11:1222–1231.
  • Prakash, S., L. Prakash, W. Burke, and B. A. Montelone. 1980. Effects of the RAD52 gene on recombination in Saccharomyces cerevisiae. Genetics 94:31–50.
  • Richardson, C. C. 1965. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli.. Proc.Natl. Acad. Sci. USA 54:158–165.
  • Rothman, J. H., C. P. Hunter, L. A. Valls, and T. H. Stevens. 1986. Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc. Natl. Acad. Sci. USA 83:3248–3252.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–209.
  • Rudin, N., E. Sugarman, and J. E. Haber. 1989. Genetic and physical analysis of double-strand break repair and recombina-tion in Saccharomyces cerevisiae. Genetics 122:519–534.
  • Sadowski, P. D. 1985. Role of nucleases in genetic recombination, p. 23–40. In S. M. Linn and R. J. Roberts (ed.), Nucleases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schiestl, R. H., and S. Prakash. 1988. RADI, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8:3619–3626.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Stevens, A. 1980. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′-3′ mode of hydrolysis. J. Biol. Chem. 255:3080–3085.
  • Sugawara, N., and J. E. Haber. Characterization of doublestrand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575.
  • Sun, H., D. Treco, and J. W. Szostak. 1991. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64:1155–1161.
  • Symington, L. S. 1991. Double-strand-break repair and recombination catalyzed by a nuclear extract of Saccharomyces cerevisiae. EMBO J. 10:987–996.
  • Symington, L. S., L. M. Fogarty, and R. D. Kolodner. 1983. Genetic recombination of homologous plasmids catalyzed by cell-free extracts of Saccharomyces cerevisiae. Cell 35:805–813.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Thomas, B. J., and R. Rothstein. 1989. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123:725–738.
  • Villadsen, I. S., S. E. Bjorn, and A. Vrang. 1982. Exonuclease II from Saccharomyces cerevisiae. J. Biol. Chem. 257:8177–8182.
  • Wake, C. T., F. Vernaleone, and J. H. Wilson. 1985. Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells. Mol. Cell. Biol. 5:2080–2089.
  • White, C. I., and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663–673.
  • Wootner, M., P. A. Wade, J. Bonner, and J. A. Jaehning. 1991. Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae.. Mol. Cell. Biol. 11:4555–4560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.