7
Views
14
CrossRef citations to date
0
Altmetric
Gene Expression

Activation of RNA Polymerase III Transcription of Human Alu Repetitive Elements by Adenovirus Type 5: Requirement for the E1b 58-Kilodalton Protein and the Products of E4 Open Reading Frames 3 and 6

&
Pages 3231-3244 | Received 12 Jan 1993, Accepted 02 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Anderson, C. W., P. R. Baum, and R. F. Gesteland. 1973. Processing of adenovirus 2-induced proteins. J. Virol. 12:241252.
  • Ariga, H. 1984. Replication of cloned DNA containing the Alu family sequence during cell extract-promoting simian virus 40 DNA synthesis. Mol. Cell. Biol. 4:1476–1482.
  • Aufiero, B., and R. J. Schneider. 1990. The hepatitis virus X-gene product transactivates both RNA polymerase II and III promoters. EMBO J. 9:497–504.
  • Babiss, L. E., H. S. Ginsberg, and J. E. Darnell, Jr. 1985. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol. Cell. Biol. 5:2552–2558.
  • Baker, C. C., and E. B. Ziff. 1981. Promoters and heterogenous 5′ termini of the mRNAs of adenovirus serotype 2. J. Mol. Biol. 149:189–221.
  • Bautista, D. S., M. Hitt, J. McGrory, and F. L. Graham. 1991. Isolation and characterization of insertion mutants in E1A of adenovirus type 5. Virology 182:578–596.
  • Berk, A. J., and P. A. Sharp. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease digested hybrids. Cell 12:721–732.
  • Bos, J. L., L. J. Polder, R. Bernards, P. I. Schrier, P. J. van den Eisen, A. J. van der Eb, and H. van Ormondt. 1981. The 2.2 kb E1B mRNA of human Ad2 and Ad5 codes two tumor antigens starting at different AUG triplets. Cell 27:121–131.
  • Branton, P. E., S. T. Bayley, and F. L. Graham. 1985. Transformation by human adenoviruses. Biochim. Biophys. Acta 780:67–94.
  • Bridge, E., and G. Ketner. 1989. Redundant control of adenovirus late gene expression by early region 4. J. Virol. 63:631–638.
  • Calabretta, B., D. L. Robberson, A. L. Maizel, and G. F. Saunders. 1981. mRNA in human cells contains sequences complementary to the Alu family of repeated DNA. Proc. Natl. Acad. Sci. USA 78:6003–6007.
  • Caporossi, D., and S. Bacchetti. 1990. Definition of adenovirus type 5 functions involved in the induction of chromosomal aberrations in human cells. J. Gen. Virol. 71:801–808.
  • Chen, P. J., A. Cywinski, and J. M. Taylor. 1985. Reverse transcription of 7S L RNA by an avian retrovirus. J. Virol. 54:278–284.
  • Chen, S. J., Z. Chen, L. d’Auriol, M. Le Conait, D. Grusz, and R. Berger. 1989. Phl+bcr- acute leukemias: implication of Alu sequences in a chromosomal translocation occurring in the new cluster region within the BCR gene. Oncogene 4:195–202.
  • Cutt, J. R., T. Shenk, and P. Hearing. 1987. Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J. Virol. 61:543–552.
  • Datta, S., C.-J. Soong, D. M. Wang, and M. L. Harter. 1991. A purified adenovirus 289-amino-acid E1A protein activates RNA polymerase III transcription in vitro and alters transcription factor TFIIIC. J. Virol. 65:5297–5304.
  • Deininger, P. L. 1989. SINES: short interspersed repeated DNA elements in higher eukaryotes, p. 619–636. In D. E. Berg and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Deininger, P. L., D. J. Jolly, C. M. Rubin, T. Freidmann, and C. W. Schmid. 1981. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J. Mol. Biol. 151:17–31.
  • Deininger, P. L., and C. W. Schmid. 1979. A study of the evolution of repeated DNA sequences in primates and the existence of a new class of repetitive sequences in primates. J. Mol. Biol. 127:437–460.
  • Duncan, C. H., P. Jagadeeswaran, R. C. Wang, and S. M. Weissman. 1981. Structural analysis of templates and RNA polymerase III transcripts of Alu family sequences interspersed among the human β-globin like genes. Gene 13:185–196.
  • Elder, J. T., J. Pan, C. H. Duncan, and S. M. Weissman. 1981. Transcriptional analysis of interspersed repetitive polymerase III transcription units in human DNA. Nucleic Acids Res. 9:1171–1189.
  • Freyer, G. A., Y. Katoh, and J. Roberts. 1984. Characterization of the major mRNAs from adenovirus type 2 early region 4 by cDNA cloning and sequencing. Nucleic Acids Res. 12:3503–3519.
  • Gaynor, R. B., L. T. Feldman, and A. J. Berk. 1985. Transcription of class III genes activated by viral immediate early proteins. Science 230:447–450.
  • Geidushek, E. P., and G. P. Tocchini-Valentini. 1988. Transcription by RNA polymerase III. Annu. Rev. Biochem. 57:873–914.
  • Graham, F. L., and L. Prevec. 1991. Manipulation of adenovirus vectors, p. 109–128. In E. J. Murray (ed.), Methods in molecular biology, vol. 7. The Humana Press Inc., Clifton, N.J.
  • Graham, F. L., J. R. Smiley, W. C. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–72.
  • Haj-Ahmad, Y., and F. L. Graham. 1986. Development of a helper independent human adenovirus vector and its use in the transfer of the herpes simplex virus thymidine kinase gene. J. Virol. 57:267–274.
  • Halbert, D. N., J. R. Cutt, and T. Shenk. 1985. Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J. Virol. 56:250–257.
  • Haley, K. P., J. Overhauser, L. E. Babiss, H. S. Ginsberg, and N. C. Jones. 1984. Transformation properties of type 5 adenovirus mutants that differentially express the E1A gene products. Proc. Natl. Acad. Sci. USA 81:5734–5738.
  • Hess, J. F., M. Fox, C. W. Schmid, and C.-K. J. Shen. 1983. Molecular evolution of the human adult α-globin-like gene region: insertion and deletion of Alu family repeats and nonAlu DNA sequences. Proc. Natl. Acad. Sci. USA 80:5970–5974.
  • Hess, J. F., C. Perez-Stable, G. J. Wu, B. Weir, I. Tinoco, Jr., and C.-K. J. Shen. 1985. End-to-end transcription of an Alu family repeat. A new type of polymerase-III-dependent terminator and its evolutionary implication. J. Mol. Biol. 184:7–21.
  • Hoeffler, W. K., R. Kovelman, and R. G. Roeder. 1989. Activation of transcription factor IIIC by the adenovirus E1A protein. Cell 53:907–920.
  • Hoeffler, W. K., and R. G. Roeder. 1985. Enhancement of RNA polymerase II transcription by the E1A gene product of adenovirus. Cell 41:955–963.
  • Howard, G. H., and K. Sakamoto. 1990. Alu interspersed repeats: selfish DNA or a functional gene family? New Biol. 2:759–770.
  • Huang, M.-M., and P. Hearing. 1989. Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J. Virol. 63:2605–2615.
  • Huang, M.-M., and P. Hearing. 1989. The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev. 3:1699–1710.
  • Jagadeeswaran, P., B. G. Forget, and S. M. Weissman. 1981. Short, interspersed repetitive DNA elements in eukaryotes: transposable DNA elements generated by reverse transcription of RNA pol III transcripts. Cell 26:141–142.
  • Jagadeeswaran, P., D. Tuan, B. G. Forget, and S. W. Weissman. 1982. A gene deletion ending at the midpoint of a repetitive DNA sequence in one form of hereditary persistence of fetal hemoglobin. Nature (London) 296:469–470.
  • Jang, K. L., and D. S. Latchman. 1989. HSV infection induces increased transcription of Alu repeated sequences by RNA polymerase III. FEBS Lett. 258:255–258.
  • Jelinek, W. R., and C. W. Schmid. 1982. Repetitive sequences in eukaryotic DNA and their expression. Annu. Rev. Biochem. 51:813–844.
  • Jelinek, W. R., T. P. Toomey, L. Leinwand, C. H. Duncan, P. A. Biro, P. V. Choudary, S. M. Weissman, C. M. Rubin, C. M. Houck, P. L. Deininger, and C. W. Schmid. 1980. Ubiquitous, interspersed repeated sequences in mammalian genomes. Proc. Natl. Acad. Sci. USA 77:1398–1402.
  • Jones, N. C., and T. Shenk. 1979. An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc. Natl. Acad. Sci. USA 76:3665–3669.
  • Jones, N. C., and T. Shenk. 1979. Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17:683–689.
  • Kariya, Y., K. Kato, Y. Hayashizaki, S. Himeno, S. Tarui, and K. Matsubara. 1987. Revision of consensus sequence of human Alu repeats—a review. Gene 53:1–10.
  • Kedinger, C., M. Gniazdowski, J. L. Mander, F. Gissinger, and P. Chambon. 1970. Alpha-amanitin: a specific inhibitor of one of two DNA-dependent RNA polymerase activities from calf thymus. Biochem. Biophys. Res. Commun. 38:165–171.
  • Lassam, N. J., S. T. Bayley, and F. L. Graham. 1979. Transforming proteins of human adenovirus 5: studies with infected and transformed cells. Cold Spring Harbor Symp. Quant. Biol. 44:477–491.
  • Leppard, K. N., and T. Shenk. 1989. The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J. 8:2329–2336.
  • Lindell, T. J., F. Winber, P. Morris, R. G. Roeder, and W. J. Rutter. 1970. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170:447–449.
  • Maran, A., and M. B. Mathews. 1988. Characterization of the double-stranded RNA implicated in the inhibition of protein synthesis in cells infected with a mutant adenovirus defective in VA RNA1 Virology 164:106–113.
  • Marton, M. J., S. B. Baim, D. A. Ornelles, and T. Shenk. 1990. The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating Ela-independent accumulation of E2 mRNA. J. Virol. 64:2345–2359.
  • Matera, G., U. Hellman, M. F. Hintz, and C. W. Schmid. 1990. Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res. 18:6019–6023.
  • Matera, G., U. Hellman, and C. W. Schmid. 1990. A transpositionally and transcriptionally competent Alu subfamily. Mol. Cell. Biol. 10:5424–5432.
  • McKinnon, R. D., P. Danielson, M. A. D Brow, R. E. Bloom, and J. G. Sutcliffe. 1987. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells. Mol. Cell. Biol. 7:2148–2154.
  • McLorie, W., C. J. McGlade, D. Takayesu, and P. E. Branton. 1990. Individual adenovirus Elb proteins induce transformation independently but by additive pathways. J. Gen. Virol. 72:1467–1471.
  • Montell, C., E. F. Fisher, M. H. Caruthers, and A. J. Berk. 1982. Resolving the functions of overlapping viral genes by site-specific mutagenesis at an mRNA splice site. Nature (London) 295:380–384.
  • Nevins, J. R. 1982. Induction of the synthesis of a 70 000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell 29:913–919.
  • Nordqvist, K., and G. Akusjarvi. 1990. Adenovirus early region 4 stimulates mRNA accumulation via 5′ introns. Proc. Natl. Acad. Sci. USA 87:9543–9547.
  • O’Malley, R. P., T. M. Mariano, J. Siekierka, and M. B. Mathews. 1986. A mechanism for the control of protein synthesis by adenovirus VA RNA1. Cell 44:391–400.
  • O’Malley, R. P., T. M. Mariano, J. Siekierka, W. C. Merrick, P. A. Rechel, and M. B. Mathews. 1986. The control of protein synthesis by adenovirus VA RNA. Cancer Cells 4:291–301.
  • Panning, B·, and J. R. Smiley. 1989. Regulation of cellular genes transduced by herpes simplex virus. J. Virol. 63:1929–1937.
  • Panning, B., and J. R. Smiley. Unpublished data.
  • Paulson, K. E., A. G. Matera, N. Deka, and C. W. Schmid. 1987. Transcription of human transposon-like sequence is usually directed by other promoters. Nucleic Acids Res. 15:5199–5215.
  • Paulson, K. E., and C. W. Schmid. 1986. Transcriptional inactivity of Alu repeats in HeLa cells. Nucleic Acids Res. 14:6145–6158.
  • Perez-Stable, C., T. M. Ayres, and C.-K. J. Shen. 1984. Distinctive sequence organization and functional programming of an Alu repeat promoter. Proc. Natl. Acad. Sci. USA 81:5291–5295.
  • Perricaudet, M., G. Akusjarvi, A. Virtanen, and U. Pettersson. 1979. Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature (London) 281:694–696.
  • Pilder, S., M. Moore, J. Logan, and T. Shenk. 1986. The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol. Cell. Biol. 6:470–476.
  • Raychaudhuri, P., S. Bauchi, S. D. Neill, and J. R. Nevins. 1990. Activation of the E2F transcription factor in adenovirus- infected cells involves E1A dependent stimulation of DNA binding activity and induction of cooperative binding mediated by an E4 gene product. J. Virol. 64:2702–2710.
  • Rinehart, R. P., T. G. Ritch, P. L. Deininger, and C. W. Schmid. 1981. Renaturation rate studies of a single family of interspersed sequences in human deoxyribonucleic acid. Biochemistry 20:3003–3010.
  • Robertson, H. D., and E. Dickson. 1984. Structure and distribution of Alu family sequences or their analogs within heterogenous nuclear RNA of HeLa, KB, and L cells. Mol. Cell. Biol. 4:310–316.
  • Rogers, J. H. 1985. Oncogene chromosome breakpoints and Alu sequences. Nature (London) 317:559.
  • Rogers, J. H. 1985. The origin and evolution of retroposons. Int. Rev. Cytol. 93:187–279.
  • Rothblum, L. L, R. Reddy, and B. Cassidy. 1982. Transcription initiation site of rat ribosomal DNA. Nucleic Acids Res. 10:7345–7362.
  • Safer, J. D., and S. J. Thurston. 1989. A negative regulatory element with properties similar to those enhancers is contained within an Alu sequence. Mol. Cell. Biol. 9:355–364.
  • Sandler, A. B., and G. Ketner. 1989. Adenovirus early region 4 is essential for normal stability of late nuclear RNAs. J. Virol. 63:624–630.
  • Sarnow, P., P. Hearing, C. W. Anderson, D. N. Halbert, T. Shenk, and A. J. Levine. 1984. Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J. Virol. 49:692–700.
  • Sarnow, P., Y. S. Ho, J. Williams, and A. J. Levine. 1982. Adenovirus Elb-58kd tumor antigen and SV40 large tumor antigen are physically associated with the 54 kd cellular protein in transformed cells. Cell 28:387–394.
  • Schmid, C. W., and W. R. Jelinek. 1982. The Alu family of dispersed repetitive sequences. Science 216:1065–1070.
  • Schmid, C. W., and C.-K. J. Shen. 1985. The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates, p. 323–358. In R. J. Macintyre (ed.), Molecular evolutionary genetics. Plenum Publishing Corp., New York.
  • Schramayr, S., D. Caporossi, I. Mak, T. Jelinek, and S. Bacchetti. 1990. Chromosomal damage induced by human adenovirus type 12 requires expression of the Elb 55-kilodal- ton viral protein. J. Virol. 64:2020–2095.
  • Singh, K., M. Carey, S. Saragosti, and M. Botchan. 1985. Expression of enhanced levels of small RNA polymerase III transcripts encoded by the B2 repeats in SV40-transformed mouse cells. Nature (London) 314:553–556.
  • Sinnett, D., C. Richer, J.-M. Deragon, and D. Labuda. 1991. Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. J. Biol. Chem. 266:8675–8678.
  • Smibert, C. A., and J. R. Smiley. 1990. Differential regulation of endogenous and transduced β-globin genes during infection of erythroid cell with a herpes simplex virus type 1 recombinant. J. Virol. 64:3882–3894.
  • Smiley, J. R., C. A. Smibert, and R. D. Everett. 1987. Expression of a cellular gene cloned in herpes simplex virus: rabbit beta-globin is regulated as an early viral gene in infected fibroblasts. J. Virol. 61:2368–2377.
  • Smiley, J. K., M. A. Young, and S. J. Flint. 1990. Intranuclear location of the adenovirus type 5 E1B 55-kilodalton protein. J. Virol. 64:4558–4564.
  • Tigges, M. A., and H. J. Raskas. 1984. Splice junctions in adenovirus type 2 early region 4 mRNAs: multiple splice sites produce 18 to 24 RNAs. J. Virol. 50:106–117.
  • Tomilin, N. V., S. M. Iguchi, and H. Ariga. 1990. Transcription and replication silencer element is present within conserved region of human Alu repeats interacting with nuclear protein. FEBS Lett. 263:69–72.
  • Ullu, E., S. Murphy, and M. Melli. 1982. Human 7SL RNA consists of a 140 nucleotide middle repetitive sequence inserted in an Alu sequence. Cell 29:195–202.
  • Ullu, E., and C. Tschudi. 1984. Alu sequences are processed 7SL RNA genes. Nature (London) 312:171–172.
  • Ullu, E., and A. M. Weiner. 1984. Human genes and pseudogenes for the 7SL RNA component of signal recognition particle. EMBO J. 3:3303–3310.
  • Ullu, E., and A. M. Weiner. 1985. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature (London) 318:371–374.
  • Van Ardsell, S. W., R. A. Denison, L. B. Bernstein, A. M. Weiner, T. Manser, and R. F. Gesteland. 1981. Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Cell 26:11–17.
  • van der Vliet, P. C., and J. S. Sussenbach. 1975. An adenovirus type 5 gene function required for initiation of viral DNA replication. Virology 67:415–426.
  • Virtanen, A., P. Gilardi, A. Naslund, J. M. Lemoullec, U. Pettersson, and M. Perricaudet. 1984. mRNAs from human adenovirus 2 early region 4. J. Virol. 55:822–831.
  • Wallace, M. R., L. B. Andersen, A. M. Santino, P. E. Gregory, T. W. Glover, and F. S. Collins. 1991. A de novo Alu insertion results in neurofibromatosis type 1. Nature (London) 353:864866.
  • Watson, J. B., and J. G. Sutcliffe. 1987. Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol. Cell. Biol. 7:3324–3327.
  • Weinberg, D. H., and G. Ketner. 1983. A cell line that supports the growth of a defective early region 4 deletion mutant of human adenovirus type 2. Proc. Natl. Acad. Sci. USA 80:5383–5386.
  • Weinberg, D. H., and G. Ketner. 1986. Adenovirus early region 4 is required for efficient viral DNA replication and for late gene expression. J. Virol. 57:833–838.
  • Weiner, A. M. 1980. An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed repetitive DNA sequence family in the human genome. Cell 22:209–218.
  • Weiner, A. M., P. L. Deininger, and A. Efstradiatis. 1986. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55:631–661.
  • Williams, J., B. D. Karger, Y. S. Ho, C. L. Castiglia, T. Mann, and S. J. Flint. 1986. The adenovirus E1B 495 R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275–284.
  • Wu, J., G. J. Grindlay, P. Bushel, L. Mendelsohn, and M. Allan. 1990. The negative regulation of the human epsilonglobin gene by transcriptional interference: a role for an Alu repetitive element. Mol. Cell. Biol. 10:1209–1216.
  • Yoshinaga, S., N. Dean, M. Han, and A. J. Berk. 1986. Adenovirus stimulation of transcription of RNA polymerase III: evidence for an E1A-dependent increase in transcription factor III C concentration. EMBO J. 5:343–354.
  • Zantema, K. A., P. I. Schrier, A. Davies-Olivier, T. Van Laars, R. T. M. J. Vresson, and A. J. van der Eb. 1985. Adenovirus serotype determines association and localization of the large Elb tumor antigen with cellular tumor antigen p53 in transformed cells. Mol. Cell. Biol. 5:3084–3091.
  • Zuckerkandl, E., G. Latter, and J. Jurka. 1989. Maintenance of function without selection: Alu sequences as “cheap genes.” J. Mol. Evol. 29:504–512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.