16
Views
19
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Yeast Cln3 Protein is an Unstable Activator of Cdc28

&
Pages 3266-3271 | Received 01 Dec 1992, Accepted 26 Feb 1993, Published online: 01 Apr 2023

REFERENCES

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Wiley Interscience, New York.
  • Booher, R., and D. Beach. 1988. Involvement of cdc13+ in mitotic control in Schizosaccharomyces pombe: possible interaction of the gene product with microtubules. EMBO J. 7:2321–2327.
  • Boyle, M., and F. R. Cross. Unpublished data.
  • Bueno, A., H. Richardson, S. I. Reed, and P. Russell. 1991. A fission yeast B-type cyclin functioning early in the cell cycle. Cell 66:149–159.
  • Carter, B. L·, and P. E. Sudbery. 1980. Small-sized mutants of Saccharomyces cerevisiae. Genetics 96:561–566.
  • Cross, F., J. Roberts, and H. Weintraub. 1989. Simple and complex cell cycles. Annu. Rev. Cell Biol. 5:341–395.
  • Cross, F. R. 1988. DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae.. Mol. Cell. Biol. 8:4675–4684.
  • Cross, F. R. 1989. Further characterization of a size control gene in Saccharomyces cerevisiae. J. Cell Sci. 94(Suppl. 12):117–127.
  • Cross, F. R. 1990. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol. 10:6482–6490.
  • Cross, F. R. 1992. CLN- and CDC28-dependent stimulation of CLN1 and CLN2 RNA levels: implications for regulation by α-factor and by cell cycle progression. Cold Spring Harbor Symp. Quant. Biol. 56:1–8.
  • Cross, F. R., and A. H. Tinkelenberg. 1991. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875–883.
  • Deshaies, R., and P. Sorger. Personal communication.
  • Fang, F., and J. W. Newport. 1991. Evidence that the Gl-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66:731–742.
  • Forsburg, S. L., and P. Nurse. 1991. Identification of a Gl-type cyclin puc1+ in the fission yeast Schizosaccharomyces pombe. Nature (London) 351:245–248.
  • Glotzer, M., A. W. Murray, and M. W. Kirschner. 1991. Cyclin is degraded by the ubiquitin pathway. Nature (London) 349:132–138.
  • Hadwiger, J. A., C. Wittenberg, H. E. Richardson, M. De Barros Lopes, and S. I. Reed. 1989. A family of cyclin homologs that control the G1 phase in yeast. Proc. Natl. Acad. Sci. USA 86:6255–6259.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hartwell, L. H. 1991. Twenty-five years of cell cycle genetics. Genetics 129:975–980.
  • Hartwell, L. H., J. Culotti, J. R. Pringle, and B. J. Reid. 1974. Genetic control of the cell division cycle in yeast. Science 183:46–51.
  • Ko, H. A·, and S. A. Moore. 1990. Kinetic characterization of a prestart cell division control step in yeast. Implications for the mechanism of alpha-factor-induced division arrest. J. Biol. Chem. 265:21652–21663.
  • Koff, A., F. Cross, A. Fisher, J. Schumacher, K. Leguellec, M. Philippe, and J. M. Roberts. 1991. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66:1217–1228.
  • Lahue, E. E., A. V. Smith, and T. L. Orr-Weaver. 1991. A novel cyclin gene from Drosophila complements CLN function in yeast. Genes Dev. 5:2166–2175.
  • Léopold, P., and P. H. O’Farrell. 1991. An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in Gl cyclins. Cell 66:1207–1216.
  • Lew, D. J., V. Dulic, and S. I. Reed. 1991. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66:1197–1206.
  • Matsushime, H., M. F. Roussel, R. A. Ashmun, and C. J. Sherr. 1991. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65:701–713.
  • Moore, S. A. 1988. Kinetic evidence for a critical rate of protein synthesis in the Saccharomyces cerevisiae yeast cell cycle. J. Biol. Chem. 263:9674–9681. (Erratum, 263:18582.)
  • Nash, R·, G. Tokiwa, S. Anand, K. Erickson, and A. B. Futcher. 1988. The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J. 7:4335–4346.
  • Paris, J., R. Le Guellec, A. Couturier, K. Le Guellec, F. Omilli, J. Camonis, S. MacNeill, and M. Philippe. 1991. Cloning by differential screening of a Xenopus cDNA coding for a protein highly homologous to cdc2.. Proc.Natl. Acad. Sci. USA 88:1039–1043.
  • Pines, J., and T. Hunter. 1990. Human cyclin A is adenovirus ElA-associated protein p60 and behaves differently from cyclin B. Nature (London) 346:760–763.
  • Pines, J., and T. Hunter. 1990. p34cdc2: the S and M kinase. New Biol. 2:389–401.
  • Pringle, J. R., and L. H. Hartwell. 1981. The Saccharomyces cerevisiae life cycle, p. 97–142. In J. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Richardson, H. E., C. Wittenberg, F. Cross, and S. I. Reed. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133.
  • Rogers, S., R. Wells, and M. Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1989. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Solomon, M. J., M. Glotzer, T. H. Lee, M. Philippe, and M. W. Kirschner. 1990. Cyclin activation of p34cdc2. Cell 63:1013–1024.
  • Tinkelenberg, A., and F. R. Cross. Unpublished data.
  • Tsai, L.-H., E. Harlow, and M. Meyerson. 1991. Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature (London) 353:174–177.
  • Tyers, M., G. Tokiwa, R. Nash, and B. Futcher. 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1773–1784.
  • Wilson, I. A., H. L. Niman, R. A. Hougten, A. R. Cherenson, M. L. Connolly, and R. A. Lerner. 1984. The structure of an antigenic determinant. Cell 37:767–778.
  • Wittenberg, C., K. Sugimoto, and S. I. Reed. 1990. Gl-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62:225–237.
  • Xiong, Y., T. Connolly, B. Futcher, and D. Beach. 1991. Human D-type cyclin. Cell 65:691–699.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.