2
Views
12
CrossRef citations to date
0
Altmetric
Gene Expression

Methylation-Enhanced Binding of Sp1 to the Stage Selector Element of the Human γ-Globin Gene Promoter May Regulate Development Specificity of Expression

, , , &
Pages 3272-3281 | Received 21 Dec 1992, Accepted 04 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Behringer, R. R., T. M. Ryan, R. D. Palmiter, R. L. Brinster, and T. M. Townes. 1990. Human γ- to β-globin gene switching in transgenic mice. Genes Dev. 4:380–389.
  • Boyes, J., and A. Bird. 1991. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134.
  • Boyes, J., and A. Bird. 1992. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11:327–333.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Chada, K., J. Magram, and F. Constantini. 1986. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature (London) 319:685–689.
  • Chada, K., J. Magram, K. Raphael, G. Radice, E. Lacy, and F. Constantini. 1985. Specific expression of foreign β-globin gene in erythroid cells of transgenic mice. Nature (London) 314:377–380.
  • Charache, S., G. Dover, K. Smith, C. C. Talbot, M. Moyer, and S. Boyer. 1983. Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with non-random hypo-methylation around the gam-ma-delta-beta-globin gene complex. Proc. Natl. Acad. Sci. USA 80:4842–4846.
  • Choi, O.-R. B., and J. D. Engel. 1988. Developmental regulation of β-globin gene switching. Cell 55:17–26.
  • DeSimone, J., P. Heller, L. Hall, and D. Zwiers. 1982. 5-Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc. Natl. Acad. Sci. USA 79:4428–4431.
  • Dignam, J. D., R. M. Lebowitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Dillon, N., and F. Grosveld. 1991. Human γ-globin genes silenced independently of other genes in the β-globin cluster. Nature (London) 350:252–254.
  • Enver, T., N. Raich, A. J. Ebens, T. Papayannopoulou, and G. Stammatoyannopoulos. 1990. Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature (London) 344:309–313.
  • Enver, T., J.-W. Zhang, T. Papayannopoulou, and G. Stammatoyannopoulos. 1988. DNA methylation: a secondary event in globin gene switching? Genes Dev. 2:698–706.
  • Fischer, K.-D., and J. Nowock. 1990. The T→C substitution at -198 of the Aγ-globin gene associated with the British form of HPFH generates overlapping recognition sites for two DNA-binding proteins. Nucleic Acids Res. 18:5685–5693.
  • Fried, M., and D. M. Crothers. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9:6506–6525.
  • Gallarda, J. L., K. P. Foley, Z. Yang, and J. D. Engel. 1989. The β-globin stage selector element factor is erythroid-specific promoter/enhancer binding protein NF-E4. Genes Dev. 3:1845–1859.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Grosveld, F., G. Blom van Assendelft, D. R. Greaves, and G. Kollias. 1987. Position-independent high-level expression of the human β-globin gene in transgenic mice. Cell 51:975–985.
  • Gumucio, D. L. Unpublished data.
  • Gumucio, D. L., K. L. Rood, K. L. Blanchard-McQuate, T. A. Gray, A. Saulino, and F. S. Collins. 1991. Sp1 binds three sites in the human γ-globin promoter: a mutation at -198 but not -202 increases Sp1 binding affinity and Sp1 dependent promoter strength. Blood 78:1853–1863.
  • Gumucio, D. L., K. L. Rood, T. A. Gray, M. F. Riordan, C. I. Sartor, and F. S. Collins. 1988. Nuclear proteins that bind the human γ-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin. Mol. Cell. Biol. 8:5310–5322.
  • Hanscombe, O., D. Whyatt, P. Fraser, N. Yannoutsos, D. Greaves, N. Dillon, and F. Grosveld. 1991. Importance of globin gene order for correct developmental expression. Genes Dev. 5:1387–1394.
  • Harrington, M. A., P. A. Jones, M. Imagawa, and M. Karin. 1988. Cytosine methylation does not affect binding of transcription factor Sp1. Proc. Natl. Acad. Sci. USA 85:2066–2070.
  • Holler, M., G. Westin, J. Jiricny, and W. Schaffner. 1988. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 2:1127–1135.
  • Iguchi-Ariga, S. M. M., and W. Schaffner. 1989. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3:612–619.
  • Jane, S. M., P. A. Ney, E. F. Vanin, D. L. Gumucio, and A. W. Nienhuis. 1992. Identification of a human stage selector element in the human γ-globin gene promoter that fosters preferential interaction with the 5′ Hs2 enhancer when in competition with the β-promoter. EMBO J. 11:2961–2969.
  • Kadonaga, J. T., and R. Tjian. 1986. Affinity purification of sequence-specific DNA-binding proteins. Proc. Natl. Acad. Sci. USA 83:5889–5893.
  • Kollias, G., N. Wrighton, J. Hurst, and F. Grosveld. 1986. Regulated expression of human Aγ, β-, and hybrid γ/β-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell 46:89–94.
  • Lewis, J. D., R. R. Meehan, W. J. Henzel, I. Maurer-Fogy, P. Jeppesen, F. Klein, and A. Bird. 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914.
  • Ley, T. J., J. DeSimone, N. P. Anagnou, G. H. Keller, R. K. Humphries, P. H. Turner, N. S. Young, P. Heller, and A. W. Nienhuis. 1982. 5-Azacytidine selectively increases γ-globin synthesis in a patient with β+ thalassemia. N. Engl. J. Med. 307:1469–1475.
  • Lloyd, J. A., R. F. Lee, and J. P. Lingrel. 1989. Mutations in two regions upstream of the Aγ-globin gene canonical promoter affect gene expression. Nucleic Acids Res. 17:4339–4352.
  • Mantovani, R., G. Superti-Furga, J. Gilman, and S. Ottolenghi. 1989. The deletion of the distal CCAAT box region of the Aγ-globin gene in black HPFH abolishes the binding of the erythroid specific protein NFE3 and of the CCAAT box displacement protein. Nucleic Acids Res. 17:6681–6691.
  • Martin, D. I. K., S.-F. Tsai, and S. H. Orkin. 1989. Increased γ-globin expression in a nondeletional HPFH mediated by an erythroid-specific DNA-binding factor. Nature (London) 338:435–438.
  • Mavilio, F. A., A. Giampolo, A. Care, G. Migliaccio, M. Calandrini, G. Russo, G. L. Pagliardi, G. Mastroberardino, M. Marinucci, and C. Peschle. 1983. Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal and adult erythroblasts. Proc. Natl. Acad. Sci. USA 80:6907–6911.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Meehan, R. R., J. D. Lewis, S. McKay, E. L. Kleiner, and A. P. Bird. 1989. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507.
  • Minie, M. E., T. Kimura, and G. Felsenfeld. 1992. The developmental switch in embryonic p-globin expression is correlated with erythroid lineage-specific differences in transcription factor levels. Development 115:1149–1164.
  • Murray, E. J., and F. Grosveld. 1987. Site specific demethylation in the promoter of human γ-globin gene does not alleviate methylation mediated suppression. EMBO J. 6:2329–2335.
  • Ney, P. A., B. P. Sorrentino, K. T. McDonagh, and A. W. Nienhuis. 1990. Tandem AP-l-binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev. 4:993–1006.
  • Pembury, M. E., W. G. Wood, D. J. Weatherall, and R. P. Perrine. 1978. Fetal hemoglobin and the sickle gene in the oases of eastern Saudi Arabia. Br. J. Hematol. 40:415–429.
  • Platt, O., S. Orkin, G. Dover, P. Beardsley, B. Miller, and D. G. Nathan. 1984. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. Clin. Invest. 74:652–656.
  • Poncz, M., P. Henthorn, C. Stoeckert, and S. Surrey. 1989. Globin gene expression in hereditary persistence of fetal hemo-globin and δβ0-thalassemia, p. 163–203. In N. McLean (ed.), Oxford surveys on eukaryotic genes. Oxford University Press, Oxford.
  • Potter, H., L. Weir, and P. Leder. 1984. Enhancer-dependent expression of human k-immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81:7161–7165.
  • Ronchi, A. S., C. Nicolis, C. Santoro, and S. Ottolenghi. 1989. Increased Sp1 binding mediates erythroid-specific expression of a mutated (HPFH) γ-globin promoter. Nucleic Acids Res. 17:10231–10241.
  • Rutherford, T. R., and A. W. Nienhuis. 1987. Human globin gene promoter sequences are sufficient for specific expression of a hybrid gene transfected into tissue culture. Mol. Cell. Biol. 7:398–402.
  • Stammatoyannopoulos, G., and A. W. Nienhuis. 1987. Hemoglobin switching, p. 67–105. In G. Stammatoyannopoulos, A. Nienhuis, P. Leder, and P. Majerus (ed.), The molecular basis of blood diseases. The W. B. Saunders Co., Philadelphia.
  • Stammatoyannopoulos, J. A., and A. W. Nienhuis. 1992. Therapeutic approaches to hemoglobin switching in treatment of hemoglobinopathies. Annu. Rev. Med. 43:497–521.
  • Strauss, F., and A. Varshavsky. 1984. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell 37:889–901.
  • Superti-Furga, G., G. Barberis, G. Schaffner, and M. Busslinger. 1988. The -117 mutation in Greek HPFH affects the binding of three nuclear factors to the CCAAT region of the γ-globin gene. EMBO J. 10:3099–3107.
  • Sykes, K., and R. Kaufman. 1990. A naturally occurring gamma globin mutation enhances Sp1 binding affinity. Mol. Cell. Biol. 10:95–102.
  • Tagle, D. A., B. F. Koop, M. Goodman, J. L. Slightom, D. Hess, and R. T. Jones. 1988. Embryonic ε and γ globin genes of a prosimian primate (Galago crassicaudatis): nucleotide and amino acid sequences, developmental regulation, and phylogenetic footprints. J. Mol. Biol. 203:439–455.
  • Takahashi, K., M. Vigneron, H. Matthes, A. Wildeman, M. Zenke, and P. Chambon. 1986. Requirement of stereospecific alignments for initiation from the simian virus 40 early pro-moter. Nature (London) 319:121–126.
  • Tanaka, M., J. A. Nolan, A. K. Bhargava, K. Rood, F. S. Collins, S. M. Weissman, B. G. Forget, and J. W. Chamberlain. 1990. Expression of human globin genes in transgenic mice carrying the β-globin gene cluster with a mutation causing Gγβ+ hereditary persistence of fetal hemoglobin. Ann. N.Y. Acad. Sci. 612:167–178.
  • Townes, T. M., J. B. Lingrel, H. Y. Chen, R. L. Brinster, and R. D. Palmiter. 1985. Erythroid-specific expression of human β-globin genes in transgenic mice. EMBO J. 4:1715–1723.
  • Tuan, D., W. Solomon, Q. Li, and I. M. London. 1985. The “β-like globin” gene domain in human erythroid cells. Proc. Natl. Acad. Sci. USA 82:6384–6388.
  • Ulrich, M. J., W. J. Gray, and T. J. Ley. 1992. An intramolecular DNA triplex is disrupted by point mutations associated with hereditary persistence of fetal hemoglobin. J. Biol. Chem. 267:18649–18658.
  • Ulrich, M. J., and T. J. Ley. 1990. Function of normal and mutated γ-globin gene promoters in electroporated K562 eryth-roleukemia cells. Blood 75:990–999.
  • van der Ploeg, L. H. T., and R. A. Flavell. 1980. DNA methylation in the γ-δ-β-globin locus in erythroid and non-erythroid cells. Cell 19:947–958.
  • van der Ploeg, L. H. T., J. Groffen, and R. A. Flavell. 1980. A novel type of secondary modification of two CCGG residues in the human γδβ-globin gene locus. Nucleic Acids Res. 8:4563–4574.
  • Wasylyk, B., C. Wasylyk, and P. Chambon. 1984. Short and long range activation by the SV40 enhancer. Nucleic Acids Res. 12:5589–5608.
  • Watt, F., and P. L. Molloy. 1988. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 2:1136–1143.
  • Wood, W. G., J. B. Clegg, and D. J. Weatherall. 1977. Developmental biology of human hemoglobins. Progr. Hematol. 10:43–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.