9
Views
16
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Mouse Heat Shock Transcription Factors 1 and 2 Prefer a Trimeric Binding Site but Interact Differently with the HSP70 Heat Shock Element

, &
Pages 3370-3383 | Received 16 Dec 1992, Accepted 18 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Abravaya, K., B. Phillips, and R. I. Morimoto. 1991. Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Mol. Cell. Biol. 11:586–592.
  • Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761–3769.
  • Becker, P. B., S. K. Rabindran, and C. Wu. 1991. Heat shock-regulated transcription in vitro from a reconstituted chromatin template. Proc. Natl. Acad. Sci. USA 88:4109–4113.
  • Burkhoff, A. M., and T. D. Tullius. 1987. The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell 48:935–943.
  • Cao, Z., R. M. Umek, and S. L. McKnight. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5:1538–1552.
  • Clos, J., J. T. Westwood, P. B. Becker, S. Wilson, K. Lambert, and C. Wu. 1990. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097.
  • Cunniff, N. F. A., J. Wagner, and W. D. Morgan. 1991. Modular recognition of 5-base-pair DNA sequence motifs by human heat shock transcription factor. Mol. Cell. Biol. 11:3504–3515.
  • Dynan, W. S. 1987. DNase I footprinting as an assay for mammalian gene regulatory proteins, p. 75–87. In J. Setlow (ed.), Genetic engineering: principles and methods, vol. 9. Plenum Press, New York.
  • Frankel, S., R. Sohn, and L. Leinwand. 1991. The use of sarkosyl in generating soluble protein after bacterial expression. Proc. Natl. Acad. Sci. USA 88:1192–1196.
  • Gallo, G. J., T. J. Schuetz, and R. E. Kingston. 1991. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae.. Mol. Cell. Biol. 11:281–288.
  • Greene, J. M., and R. E. Kingston. 1990. TATA-dependent and TATA-independent function of the basal and heat shock ele-ments of a human hsp70 promoter. Mol. Cell. Biol. 10:1319–1328.
  • Greene, J. M., Z. Larin, I. C. Taylor, H. Prentice, K. A. Gwinn, and R. E. Kingston. 1987. Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines. Mol. Cell. Biol. 7:3646–3655.
  • Hayes, J. J., and T. D. Tullius. 1989. The missing nucleoside experiment: a new technique to study recognition of DNA by protein. Biochemistry 28:9521–9527.
  • Hertzberg, R. P., and P. B. Dervan. 1984. Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses. Biochemistry 23:3934–3945.
  • Hunt, C., and S. Calderwood. 1990. Characterization and sequence of a mouse hsp70 gene and its expression in mouse cell lines. Gene 87:199–204.
  • Jakobsen, B. K., and H. R. B. Pelham. 1991. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J. 10:369–375.
  • Johnson, P. F., and S. L. McKnight. 1989. Eukaryotic transcriptional regulatory proteins. Annu. Rev. Biochem. 58:799–839.
  • Jones, K. A., K. R. Yamamoto, and R. Tjian. 1985. Two distinct transcription factors bind to the HSV thymidine kinase pro-moter in vitro. Cell 42:559–572.
  • Jones, N. 1990. Transcriptional regulation by dimerization: two sides to an incestuous relationship. Cell 61:9–11.
  • Kim, J., C. Zwieb, C. Wu, and S. Adhya. 1989. Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85:15–23.
  • Kingston, R. E., T. J. Schuetz, and Z. Larin. 1987. Heatinducible human factor that binds to a human hsp70 promoter. Mol. Cell. Biol. 7:1530–1534.
  • Koo, H.-S., H.-M. Wu, and D. M. Crothers. 1986. DNA bending at adenine-thymine tracts. Nature (London) 320:501–506.
  • Liu, A. Y., H. S. Choi, Y. K. Lee, and K. Y. Chen. 1991. Molecular events involved in transcriptional activation of heat shock genes become progressively refractory to heat stimulation during aging of human diploid fibroblasts. J. Cell. Physiol. 149:560–566.
  • Maxam, A. M., and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–564.
  • Maxam, A. M., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Morgan, W. D., G. T. Williams, R. I. Morimoto, J. Greene, R. E. Kingston, and R. Tjian. 1987. Two transcriptional activa-tors, CCAAT-box binding transcription factor and heat shock transcription factor, interact with a human HSP70 gene promoter. Mol. Cell. Biol. 7:1129–1138.
  • Mosser, D. D., P. T. Kotzbauer, K. D. Sarge, and R. I. Morimoto. 1990. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc. Natl. Acad. Sci. USA 87:3748–3752.
  • Nakai, A., and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13:1983–1997.
  • Nieto-Sotelo, J., G. Wiederrecht, A. Okuda, and C. S. Parker. 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62:807–817.
  • O’Halloran, T. V., B. Frantz, M. K. Shin, D. M. Ralston, and J. G. Wright. 1989. The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56:119–129.
  • Peristc, O., H. Xiao, and J. T. Lis. 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59:797–806.
  • Peteranderl, R., and H. C. M. Nelson. Trimerization of the heat shock transcription factor by a triple-stranded α-helical coiled- coil. Biochemistry, in press.
  • Rabindran, S. K., G. Giongi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88:6906–6910.
  • Rosenberg, A. H., B. N. Lade, D.-S. Chui, S.-W. Lin, J. J. Dunn, and F. W. Studier. 1987. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56:125–135.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sarge, K. D., S. P. Murphy, and R. I. Morimoto. 1993. Activation of heat shock gene transcription by HSF1 involves oli-gomerization, acquisition of DNA binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13:1392–1407.
  • Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5:1902–1911.
  • Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51:660–672.
  • Scharf, K.-D., S. Rose, W. Zott, F. Schoff, and L. Nover. 1990. Three tomato genes code for heat stress transcription factors with a remarkable degree of homology to the DNA-binding domain of the yeast HSF. EMBO J. 9:4495–4501.
  • Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88:6910–6915.
  • Shuey, D. J., and C. S. Parker. 1986. Binding of Drosophila heat-shock transcription factor to the hsp 70 promoter: evidence for symmetric and dynamic interactions. J. Biol. Chem. 261:7934–7940.
  • Sistonen, L. Unpublished data.
  • Sistonen, L., K. D. Sarge, B. Phillips, K. Abravaya, and R. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell. Biol. 12:4104–4111.
  • Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793–805.
  • Sorger, P. K., M. J. Lewis, and H. R. B. Pelham. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature (London) 329:81–84.
  • Sorger, P. K., and H. C. M. Nelson. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813.
  • Studier, F. W., and B. A. Moffat. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:113–130.
  • Taylor, I. C. A., J. L. Workman, T. J. Schuetz, and R. E. Kingston. 1991. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA- binding domains. Genes Dev. 5:1285–1298.
  • Tullius, T. D., B. A. Dombroski, M. E. A Churchill, and L. Kam. 1987. Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts. Methods Enzymol. 155:537–558.
  • Westwood, J. T., J. Clos, and C. Wu. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature (London) 353:822–827.
  • Wiederrecht, G., D. Seto, and C. S. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853.
  • Williams, G. T., T. K. McClanahan, and R. I. Morimoto. 1989. E1a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol. Cell. Biol. 9:2574–2587.
  • Williams, G. T., and R. I. Morimoto. 1990. Maximal stress- induced transcription from the human hsp70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol. Cell. Biol. 10:3125–3136.
  • Wu, B. J., R. E. Kingston, and R. I. Morimoto. 1986. Human HSP70 promoter contains at least two distinct regulatory do-mains. Proc. Natl. Acad. Sci. USA 83:629–633.
  • Wu, C., S. Wilson, B. Walker, I. Dawid, T. Paisley, V. Zimarino, and H. Ueda. 1987. Purification and properties of Drosophila heat shock activator protein. Science 238:1247–1253.
  • Xiao, H., and J. T. Lis. 1988. Germline transformation used to define key features of the heat shock response element. Science 239:1139–1142.
  • Xiao, H., O. Perisic, and J. T. Lis. 1991. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585–593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.