38
Views
12
CrossRef citations to date
0
Altmetric
Gene Expression

GCN1, a Translational Activator of GCN4 in Saccharomyces cerevisiae, is Required for Phosphorylation of Eukaryotic Translation Initiation Factor 2 by Protein Kinase GCN2

, &
Pages 3541-3556 | Received 09 Feb 1993, Accepted 23 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Abastado, J. P., P. F. Miller, B. M. Jackson, and A. G. Hinnebusch. 1991. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol. Cell. Biol. 11:486–496.
  • Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. [10]5-fluoroorotic acid as a selective agent in yeast molecular genes. Methods Enzymol. 154:164–175.
  • Bushman, J. L., A. I. Asuru, R. L. Matts, and A. G. Hinnebusch. 1993. Evidence that GCD6 and GCD7, translational regulators of GCN4, are subunits of the guanine nucleotide exchange factor for eIF-2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:1920–1932.
  • Bushman, J. L., M. Foiani, A. M. Cigan, C. J. Paddon, and A. G. Hinnebusch. 1993. Guanine nucleotide exchange factor for eIF-2 in yeast: interactions between essential subunits GCD2, GCD6, and GCD7 and regulatory subunit GCN3. Submitted for publication.
  • Cashel, M., and K. E. Rudd. 1987. The stringent response, p. 1410–1438. In F. C. Neidhardt, J. L. Ingraham, B. Magasanik, K. B. Low, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
  • Chakraburtty, K. 1992. Elongation factor 3—a unique fungal protein, p. 114–142. In P. B. Fernandes (ed.), New approaches for antifungal drugs. Birkhauser, New York.
  • Chakraburtty, K., and A. Kamath. 1988. Protein synthesis in yeast. Int. J. Biochem. 20:581–590.
  • Chang, H.-W., J. C. Watson, and B. L. Jacobs. 1992. The E3L gene of vaccinia virus encodes an inhibitor of the interferon- induced, double-stranded RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA 89:4825–4829.
  • Chong, K. L., L. Feng, K. Schappert, E. Meurs, T. F. Donahue, J. D. Friesen, A. G. Hovanessian, and B. R. G. Williams. 1992. Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11:1553–1562.
  • Cigan, A. M., J. L. Bushman, T. R. Boal, and A. G. Hinnebusch. A protein complex of translational regulators of GCN4 is the guanine nucleotide exchange factor for eIF-2 in yeast. Proc. Natl. Acad. Sci. USA, in press.
  • Cigan, A. M., M. Foiani, E. M. Hannig, and A. G. Hinnebusch. 1991. Complex formation by positive and negative translational regulators of GCN4. Mol. Cell. Biol. 11:3217–3228.
  • Cigan, A. M., E. K. Pabich, L. Feng, and T. F. Donahue. 1989. Yeast translation initiation suppressor sui2 encodes the α subunit of eukaryotic initiation factor 2 and shares identity with the human α subunit. Proc. Natl. Acad. Sci. USA 86:2784–2788.
  • Clemens, M. J., A. Galpine, S. A. Austin, R. Panniers, E. C. Henshaw, R. Duncan, J. W. Hershey, and J. W. Pollard. 1987. Regulation of polypeptide chain initiation in Chinese hamster ovary cells with a temperature-sensitive leucyl-tRNA syn-thetase. Changes in phosphorylation of initiation factor eIF-2 and in the activity of the guanine nucleotide exchange factor GEF. J. Biol. Chem. 262:767–771.
  • Colthurst, D. R., M. Santos, C. M. Grant, and M. F. Tuite. 1991. Candida albicans and three other Candida species contain an elongation factor structurally and functionally analogous to elongation factor 3. FEMS Microbiol. Lett. 80:45–50.
  • Dasmahapatra, B., and K. Chakraburtty. 1981. Protein synthesis in yeast. I. Purification and properties of elongation factor 3 from Saccharomyces cerevisiae. J. Biol. Chem. 256:999910004.
  • Davies, M. V., O. Elroy-Stein, R. Jagus, B. Moss, and R. J. Kaufman. 1992. The vaccinia virus K3L gene product potenti-ates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J. Virol. 66:1943–1950.
  • Davis, R., M. Thomas, J. Cameron, T. St. John, S. Scherer, and R. Padgett. 1980. Rapid DNA isolation for enzymatic and hybridization analysis. Methods Enzymol. 65:404–411.
  • Dever, T. E., J.-J. Chen, G. N. Barber, A. M. Cigan, L. Feng, T. F. Donahue, I. M. London, M. G. Katze, and A. G. Hinnebusch. Mammalian eukaryotic initiation factor 2α kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism in yeast. Proc. Natl. Acad. Sci. USA, in press.
  • Dever, T. E., L. Feng, R. C. Wek, A. M. Cigan, T. D. Donahue, and A. G. Hinnebusch. 1992. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596.
  • Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • DiDomenico, B. J., J. Lupisella, M. Sandbaken, and K. Chakraburtty. 1992. Isolation and sequence analysis of the gene encoding translation elongation factor 3 from Candida albicans. Yeast 8:337–352.
  • Donahue, T. F., A. M. Cigan, E. K. Pabich, and B. Castilho-Valavicius. 1988. Mutations at a Zn(II) finger motif in the yeast eIF-2β gene alter ribosomal start-site selection during the scanning process. Cell 54:621–632.
  • Donahue, T. F., R. S. Daves, G. Lucchini, and G. R. Fink. 1983. A short nucleotide sequence required for regulation of HIS4 by the general control system of yeast. Cell 32:89–98.
  • Donahue, T. F., P. J. Farabaugh, and G. R. Fink. 1982. The nucleotide sequence of the HIS4 region of yeast. Gene 18:47–59.
  • Doolittle, R. F. 1986. Of URFs and ORFs: a primer on how to analyze derived amino acid sequences. University Science Books, Mill Valley, Calif.
  • Goldman, E., and H. Jakubowski. 1990. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol. Microbiol. 4:2035–2040.
  • Gribskov, M., and R. R. Burgess. 1986. Sigma factors from E. coli, B. subtilis, phage SPO1, and phage T4 are homologous proteins. Nucleic Acids Res. 14:6745–6763.
  • Hannig, E. H., N. P. Williams, R. C. Wek, and A. G. Hinnebusch. 1990. The translational activator GCN3 functions down-stream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccha-romyces cerevisiae. Genetics 126:549–562.
  • Hannig, E. M., A. M. Cigan, B. A. Freeman, and T. G. Kinzy. 1993. GCD11, a negative regulator of GCN4 expression, encodes the γ subunit of eIF-2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:506–520.
  • Hannig, E. M., and A. G. Hinnebusch. 1988. Molecular analysis of GCN3, a translational activator of GCN4: evidence for posttranslational control of GCN3 regulatory function. Mol. Cell. Biol. 8:4808–4820.
  • Hershey, J. W. B. 1991. Translational control in mammalian cells. Annu. Rev. Biochem. 60:717–755.
  • Higgins, C. F., I. D. Hiles, P. C. Salmond, D. R. Gill, J. A. Downie, I. J. Evans, I. B. Holland, L. Gray, S. D. Buckel, A. W. Bell, and M. A. Hermodson. 1986. A family of related ATP- binding subunits coupled to many distinct biological processes in bacteria. Nature (London) 323:448–450.
  • Hinnebusch, A. G. 1985. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 5:2349–2360.
  • Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 52:248–273.
  • Hinnebusch, A. G., and G. R. Fink. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:5374–5378.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kamath, A., and K. Chakraburtty. 1989. Role of yeast elongation factor 3 in the elongation cycle. J. Biol. Chem. 264:15423–15428.
  • Katze, M. G., and R. M. Krug. 1990. Translational control in influenza virus-infected cells. Enzyme 44:265–277.
  • Kawasaki, G., and D. G. Fraenkel. 1982. Cloning of yeast glycolysis genes by complementation. Biochem. Biophys. Res. Commun. 108:1107–1122.
  • Koromilas, A. E., S. Roy, G. N. Barber, M. G. Katze, and N. Sonenberg. 1992. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257:1685–1689.
  • Lee, T. G., J. Tomita, A. G. Hovanessian, and M. G. Katze. 1990. Purification and partial characterization of a cellular inhibitor of the interferon-induced protein kinase of Mr 68,000 from influenza virus-infected cells. Proc. Natl. Acad. Sci. USA 87:6208–6212.
  • Lee, T. G., J. Tomita, A. G. Hovanessian, and M. G. Katze. 1992. Characterization and regulation of the 58,000-dalton cel-lular inhibitor of the interferon-induced, dsRNA-activated protein kinase. J. Biol. Chem. 267:14238–14243.
  • Lucchini, G., A. G. Hinnebusch, C. Chen, and G. R. Fink. 1984. Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1326–1333.
  • Marton, M. J., and A. G. Hinnebusch. Unpublished observations.
  • Mathews, M. B. 1990. Control of translation in adenovirus- infected cells. Enzyme 44:250–264.
  • Miyazaki, M., and H. Kagiyama. 1990. Soluble factor requirements for the Tetrahymena peptide elongation system and the ribosomal ATPase as a counterpart of yeast elongation factor 3 (EF-3). J. Biochem. 108:1001–1008.
  • Moehle, C. M., and A. G. Hinnebusch. 1991. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:2723–2735.
  • Mueller, P. P., S. Harashima, and A. G. Hinnebusch. 1987. A segment of GCN4 mRNA containing the upstream AUG codons confers translational control upon a heterologous yeast transcript. Proc. Natl. Acad. Sci. USA 84:2863–2867.
  • Mueller, P. P., and A. G. Hinnebusch. 1986. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201–207.
  • Myers, K. K., W. A. Fonzi, and P. S. Sypherd. 1992. Isolation and sequence analysis of the gene for translation elongation factor 3 from Candida albicans. Nucleic Acids Res. 20:1705–1710.
  • Parent, S. A., C. M. Fenimore, and K. A. Bostian. 1985. Vector systems for the expression, analysis and cloning of DNA sequences in the DNA sequences in S. cerevisiae. Yeast 1:83–138.
  • Parker, R. C., R. M. Watson, and J. Vinograd. 1977. Mapping of closed circular DNAs by cleavage with restriction endonucleases and calibration by agarose gel electrophoresis. Proc. Natl. Acad. Sci. USA 74:851–855.
  • Pearson, W. R., and D. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444–2448.
  • Qin, S., A. Xie, M. C. Bonato, and C. S. McLaughlin. 1990. Sequence analysis of the translational elongation factor 3 from Saccharomyces cerevisiae. J. Biol. Chem. 265:1903–1912.
  • Ramirez, M., R. C. Wek, and A. G. Hinnebusch. 1991. Ribosome-association of GCN2 protein kinase, a translational acti-vator of the GCN4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3027–3036.
  • Ramirez, M., R. C. Wek, C. R. Vazquez de Aldana, B. M. Jackson, B. Freeman, and A. G. Hinnebusch. 1992. Mutations activating the yeast eIF-2α kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Mol. Cell. Biol. 12:5801–5815.
  • Riles, L., and M. Olson. Personal communication.
  • Rose, M. D., and G. R. Fink. 1987. KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell 48:1047–1060.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sandbaken, M., O. Kuvalchucke, and K. Chakraburtty. Personal communication.
  • Sandbaken, M., J. A. Lupisella, B. DiDomenico, and K. Chakraburtty. 1990. Isolation and characterization of the structural gene encoding elongation factor 3. Biochim. Biophys. Acta 1050:230–234.
  • Sandbaken, M. G., J. A. Lupisella, B. DiDomenico, and K. Chakraburtty. 1990. Protein synthesis in yeast—structural and functional analysis of the gene encoding elongation factor 3. J. Biol. Chem. 265:15838–15844.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schürch, A., J. Miozzari, and R. Hütter. 1974. Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan-sensitive mutants. J. Bacteriol. 117:1131–1140.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1974. Methods of yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designated for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Skogerson, L. 1979. Separation and characterization of yeast elongation factors. Methods Enzymol. 60:676–685.
  • Skogerson, L., and E. Wakatama. 1976. A ribosome-dependent GTPase from yeast distinct from elongation factor 2. Proc. Natl. Acad. Sci. USA 73:73–76.
  • Southern, E. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Thireos, G., M. Driscoll-Penn, and H. Greer. 1984. 5′ untranslated sequences are required for the translational control of a yeast regulatory gene. Proc. Natl. Acad. Sci. USA 81:5096–5100.
  • Triana, F. J., K. H. Nierhaus, J. Ziehler, and K. Chakraburtty. Defining the function of EF-3 from low fungi. In K. H. Nierhaus (ed.), The translational apparatus, in press. Plenum Press, New York.
  • Uritani, M., and M. Miyazaki. 1988. Role of yeast elongation factor 3 (EF-3) at the AA-tRNA binding step. J. Biochem. 104:118–126.
  • Uritani, M., and M. Miyazaki. 1988. Characterization of the ATPase and GTPase activities of elongation factor 3 (EF-3) purified from yeasts. J. Biochem. 103:522–530.
  • Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.
  • Wek, R. C., J. F. Cannon, T. E. Dever, and A. G. Hinnebusch. 1992. Truncated protein phosphatase GLC7 restores transla-tional activation of GCN4 expression in yeast mutants defective for the eIF-2α kinase GCN2. Mol. Cell. Biol. 12:5700–5710.
  • Wek, R. C., B. M. Jackson, and A. G. Hinnebusch. 1989. Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc. Natl. Acad. Sci. USA 86:4579–4583.
  • Wek, R. C., M. Ramirez, B. M. Jackson, and A. G. Hinnebusch. 1990. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol. Cell. Biol. 10:2820–2831.
  • Williams, N. P., A. G. Hinnebusch, and T. F. Donahue. 1989. Mutations in the structural genes for eukaryotic initiation fac-tors 2α and 2β of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA. Proc. Natl. Acad. Sci. USA 86:7515–7519.
  • Ypma-Wong, M., W. A. Fonzi, and P. S. Sypherd. 1992. Fungus-specific translation elongation factor 3 gene present in Pneumocystis carimi. Infect. Immun. 60:4140–4145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.