3
Views
1
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Overproduction of v-Myc in the Nucleus and Its Excess Over Max Are Not Required for Avian Fibroblast Transformation

, &
Pages 3623-3631 | Received 31 Dec 1992, Accepted 16 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Abrams, H. D., L. R. Rohrschneider, and R. N. Eisenman. 1982. Nuclear location of the putative transforming protein of avian myelocytomatosis virus. Cell 29:427–439.
  • Ayer, D. E., L. Kretzner, and R. N. Eisenman. 1993. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72:211–222.
  • Barrett, J., M. J. Birrer, G. J. Kato, H. Dosaka-Akita, and C. V. Dang. 1992. Activation domains of L-myc and c-myc determine their transforming potencies in rat embryo cells. Mol. Cell. Biol. 12:3130–3137.
  • Beckmann, H., L. K. Su, and T. Kadesch. 1990. TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev. 4:167–179.
  • Biegalke, B. J., M. L. Heaney, A. Bouton, J. T. Parsons, and M. Linial. 1987. MC29 deletion mutants which fail to transform chicken macrophages are competent for transformation of quail macrophages. J. Virol. 61:2138–2142.
  • Bister, K., and H. W. Jansen. 1986. Oncogenes in retroviruses and cells: biochemistry and molecular genetics. Adv. Cancer Res. 47:99–188.
  • Blackwell, T. K., L. Kretzner, E. M. Blackwood, R. N. Eisenman, and H. Weintraub. 1990. Sequence-specific DNA binding by the c-myc protein. Science 250:1149–1151.
  • Blackwood, E. M., and R. N. Eisenman. 1991. Max: a helix-loop- helix-zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217.
  • Blackwood, E. M., B. Luscher, and R. N. Eisenman. 1992. Myc and Max associate in vivo. Genes Dev. 6:71–80.
  • Cai, M., and R. W. Davis. 1990. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437–446.
  • Chen, C., B. J. Biegalke, R. N. Eisenman, and M. L. Linial. 1989. FH3, a v-myc avian retrovirus with limited transforming ability. J. Virol. 63:5092–5100.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium-thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Cole, M. D. 1986. The myc oncogene: its role in transformation and differentiation. Annu. Rev. Genet. 20:361–384.
  • Collum, R. G., and F. W. Alt. 1990. Are myc proteins transcription factors? Cancer Cells 2:69–74.
  • Crouch, D. H., C. Lang, and D. A. F. Gillespie. 1990. The leucine zipper domain of avian cMyc is required for transfor-mation and autoregulation. Oncogene 5:683–689.
  • Dang, C. V. 1991. c-Myc oncoprotein function. Biochim. Biophys. Acta 1072:102–113.
  • Dang, C. V., C. Dolde, M. L. Gillison, and G. J. Kato. 1992. Discrimination between related DNA sites by a single amino acid residue of myc-related basic-helix-loop-helix proteins. Proc. Natl. Acad. Sci. USA 89:599–602.
  • Dang, C. V., and W. M. Lee. 1988. Identification of the human c-myc protein nuclear translocation signal. Mol. Cell. Biol. 8:4048–4054.
  • Davis, R. L., P.-F. Cheng, A. Lassar, and H. Weintraub. 1990. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733–746.
  • DePinho, R. A., N. Schreiber-Agus, and F. W. Alt. 1991. Myc family oncogenes in the development of normal and neoplastic cells. Adv. Cancer Res. 57:1–46.
  • Enrietto, P. J. 1989. A small deletion in the carboxy terminus of the viral myc gene renders the virus MC29 partially transformation defective in avian fibroblasts. Virology 168:256–266.
  • Evan, G. I., A. H. Wyllie, C. S. Gilbert, T. D. Littlewood, H. Land, M. Brooks, C. M. Waters, L. Z. Penn, and D. C. Hancock. 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128.
  • Fisher, F., P.-S. Jayaraman, and C. R. Goding. 1992. c-Myc and the yeast transcription factor PHO4 share a common CACGTG-binding motif. Oncogene 6:1099–1104.
  • Frykberg, L., T. Graf, and B. Vennstrom. 1987. The transforming activity of the chicken c-myc gene can be potentiated by mutations. Oncogene 1:415–421.
  • Gao, M., and D. M. Knipe. 1992. Distal protein sequences can affect the function of a nuclear localization signal. Mol. Cell. Biol. 12:1330–1339.
  • Gardiner, E., A. Richman, and A. Hayday. 1991. MYC activation: a case of complex corruption. Sem. Virol. 2:341–350.
  • Gregor, P. D., M. Sawadogo, and R. G. Roeder. 1990. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev. 4:1730–1740.
  • Hann, S. R., H. D. Abrams, L. R. Rohrschneider, and R. N. Eisenman. 1983. Proteins encoded by v-myc and c-myc onco-genes: identification and localization in acute leukemia virus transformants and bursal lymphoma cell lines. Cell 34:789–798.
  • Hann, S. R., and R. N. Eisenman. 1984. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol. Cell. Biol. 4:2486–2497.
  • Heaney, M. L., J. H. Pierce, and J. T. Parsons. 1986. Site- directed mutagenesis of the gag-myc gene of avian myelocy-tomatosis virus 29: biological activity and intracellular localization of structurally altered proteins. J. Virol. 60:167–176.
  • Kato, G. J., J. Barrett, M. Villa-Garcia, and C. V. Dang. 1990. An amino-terminal c-Myc domain required for neoplastic transformation activates transcription. Mol. Cell. Biol. 10:5914–5920.
  • Kerkhoff, E., K. Bister, and K. H. Klempnauer. 1991. Sequencespecific DNA binding by Myc proteins. Proc. Natl. Acad. Sci. USA 88:4323–4327.
  • Kretzner, L., E. M. Blackwood, and R. N. Eisenman. 1992. Myc and Max proteins possess distinct transcriptional activities. Nature (London) 359:426–429.
  • Land, H., L. F. Parada, and R. A. Weinberg. 1983. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature (London) 304:596–602.
  • Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764.
  • Linial, M. 1982. Two retroviruses with similar transforming genes exhibit differences in transforming potential. Virology 119:382–391.
  • Linial, M., and M. Groudine. 1985. Transcription of three c-myc exons is enhanced in chicken bursal lymphoma cell lines. Proc. Natl. Acad. Sci. USA 82:53–57.
  • Littlewood, T. D., B. Amati, H. Land, and G. I. Evan. 1992. Max and c-Myc/Max DNA-binding activities in cell extracts. Oncogene 7:1783–1792.
  • Luscher, B., and R. N. Eisenman. 1990. New light on Myc and Myb. I. Myc. Genes Dev. 4:2025–2035.
  • Ma, A., R. K. Smith, A. Tesfaye, P. Achacoso, R. Dildrop, N. Rosenburg, and F. W. Alt. 1991. Mechanism of endogenous myc gene down-regulation in Eu-N-myc tumors. Mol. Cell. Biol. 11:440–444.
  • Makela, T. P., P. J. Koskinen, I. Vastrik, and K. Alitalo. 1992. Alternative forms of Max as enhancers or suppressors of myc-ras cotransformation. Science 256:373–377.
  • Mitchell, P. J., and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378.
  • Mukherjee, B., S. D. Morgenbesser, and R. A. DePinho. 1992. Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-interference by Max and trans-acting dominant mutants. Genes Dev. 6:1480–1492.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.
  • Penn, L. J. Z., M. W. Brooks, E. M. Laufer, and H. Land. 1990. Negative autoregulation of c-myc transcription. EMBO J. 9:1113–1121.
  • Prendergast, G. C., R. Hopewell, B. J. Gorham, and E. B. Ziff. 1992. Biphasic effect of Max on Myc cotransformation activity and dependence on amino- and carboxy-terminal Max functions. Genes Dev. 6:2429–2439.
  • Prendergast, G. C., D. Lawe, and E. B. Ziff. 1991. Association of myn, the murine homolog of max, with c-myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65:395–408.
  • Prendergast, G. C., and E. B. Ziff. 1991. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251:186–190.
  • Ptashne, M., and A. A. Gann. 1990. Activators and targets. Nature (London) 346:329–331.
  • Spencer, C. A., and M. Groudine. 1991. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56:1–48.
  • Stone, J., T. de Lange, G. Ramsay, E. Jakobovits, J. M. Bishop, H. Various, and W. Lee. 1987. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7:1697–1709.
  • Symonds, G., A. Hartshorn, A. Kennewell, M.-A. O’Mara, A. Bruskin, and J. M. Bishop. 1989. Transformation of murine myelomonocytic cells by myc: point mutations in v-myc contribute synergistically to transforming potential. Oncogene 4:285–294.
  • Tikhonenko, A. T., and M. L. Linial. 1992. gag as well as myc sequences contribute to the transforming phenotype of the avian retrovirus FH3. J. Virol. 66:946–955.
  • Torres, R., N. Schreiber-Agus, S. D. Morgenbesser, and R. A. DePinho. 1992. Myc and Max: a putative transcriptional com-plex in search of a cellular target. Curr. Opin. Cell Biol. 4:468–474.
  • Vaux, D. L., S. Cory, and J. M. Adams. 1988. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature (London) 335:440–442.
  • Watson, D. K., E. P. Reddy, P. H. Duesberg, and T. S. Papas. 1983. Nucleotide sequence analysis of the chicken c-myc gene reveals homologous and unique coding regions by comparison with the transforming gene of avian myelocytomatosis virus MC29, dgag-myc. Proc. Natl. Acad. Sci. USA 80:2146–2150.
  • Zervos, A. S., J. Gyuris, and R. Brent. 1993. Mxil, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72:223–232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.