1
Views
4
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Isolation of STD1, a High-Copy-Number Suppressor of a Dominant Negative Mutation in the Yeast TATA-Binding Protein

, &
Pages 3650-3659 | Received 05 Nov 1992, Accepted 08 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Aldrich, T. L., G. D. Segni, B. L. McConaughy, N. Keen, S. Whelen, and B. D. Hall. Structure of the yeast TAP1 protein: dependence of transcription activation upon the DNA context of the target gene. Submitted for publication.
  • Amberg, D. C., A. L. Goldstein, and C. N. Cole. 1992. Isolation and characterization of RAT1: an essential gene of Saccharo-myces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6:1173–1189.
  • Atschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. L. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Ausubel, A. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Wiley Interscience, New York.
  • Bennetzen, J. L., and B. D. Hall. 1982. Codon selection in yeast. J. Biol. Chem. 257:3026–3031.
  • Blume, J. E., D. R. Shaw, and H. L. Ennis. 1991. Unpublished data.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Buratowski, S., and H. Zhou. 1992. A suppressor of TBP mutations encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71:221–230.
  • Cavallini, B., I. Faus, H. Matthes, J. M. Chipoulet, B. Winsor, J. M. Egly, and P. Chambon. 1989. Cloning of the gene encoding the yeast protein BTF1, which can substitute for the human TATA box-binding factor. Proc. Natl. Acad. Sci. USA 86:9803–9807.
  • Comai, L., N. Tanese, and R. Tjian. 1992. The TATA binding protein and associated factors are integral components of the RNA polymerase I transcription factor SL1. Cell 68:965–976.
  • Cormack, B. P., M. Strubin, A. S. Ponticelli, and K. Struhl. 1991. Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell 65:341–348.
  • Davison, B. L., J. M. Egly, E. R. Mulvihill, and P. Chambon. 1983. Formation of stable preinitiation complexes between eukaryotic class B transcription factors and promoter sequences. Nature (London) 301:680–686.
  • Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Donahue, T. F., and A. M. Cigan. 1990. Sequence and structure requirements for efficient translation in yeast. Methods Enzymol. 185:366–372.
  • Dynlacht, B. D., T. Hoey, and R. Tjian. 1991. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66:563–576.
  • Eisenmann, D. M., K. A. Arndt, S. L. Ricupero, J. W. Rooney, and F. Winston. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:1319–1331.
  • Eisenmann, D. M., C. Dollard, and F. Winston. 1989. SPT15, the gene encoding the yeast TATA binding factor TFIID, is re-quired for normal transcription initiation in vivo. Cell 58:1183–1191.
  • Elledge, S. J., and R. W. Davis. 1988. A family of versatile centromeric vectors designed for use in the sectoring-shuffle mutagenesis assay in Saccharomyces cerevisiae. Gene 70:303–312.
  • Fikes, J. D., D. M. Becker, F. Winston, and L. Guarente. 1990. Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature (London) 346:291–294.
  • Fire, A., M. Samuels, and P. A. Sharp. 1984. Interactions between RNA polymerase II, factors and template leading to accurate transcription. J. Biol. Chem. 259:2509–2516.
  • Gasch, A., A. Hoffmann, M. Horikoshi, R. G. Roeder, and N. H. Chua. 1990. Arabidopsis thaliana contains two genes for TFIID. Nature (London) 346:390–394.
  • Gill, G., and R. Tjian. 1991. A highly conserved domain of TFIID displays species specificity in vivo. Cell 65:333–340.
  • Haass, M. M., and G. Feix. 1992. Two different cDNA’s encoding TFIID proteins of maize. FEBS Lett. 301:294–298.
  • Hahn, S., S. Buratowski, P. A. Sharp, and L. Guarente. 1989. Isolation of the gene encoding the yeast TATA binding protein TFIID: a gene identical to the SPT15 suppressor of TY element insertions. Cell 58:1173–1181.
  • Harlow, E., and D. Lane. 1988. Antibodies, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hoey, T., B. D. Dynlacht, M. G. Peterson, B. F. Pugh, and R. Tjian. 1990. Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell 61:1179–1186.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Hoffmann, A., M. Horikoshi, C. K. Wang, S. Schroeder, P. A. Weil, and R. G. Roeder. 1990. Cloning of Schizosaccharomyces pombe TFIID gene reveals a strong conservation of functional domains present in Saccharomyces cerevisiae TFIID. Genes Dev. 4:1141–1148.
  • Hoffmann, A., E. Sinn, T. Yamamoto, J. Wang, A. Roy, M. Horikoshi, and R. G. Roeder. 1990. Highly conserved core domain and unique N-terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature (London) 346:387–390.
  • Horikoshi, M., K. C. Wang, H. Fujii, J. A. Cromlish, P. A. Weil, and R. G. Roeder. 1989. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Nature (London) 341:299–303.
  • Horikoshi, M., K. C. Wang, H. Fujii, J. A. Cromlish, P. A. Weil, and R. G. Roeder. 1989. Purification of a yeast TATA boxbinding protein that exhibits human transcription factor IID activity. Proc. Natl. Acad. Sci. USA 86:4843–4847.
  • Horikoshi, M., T. Yamamoto, Y. Ohkuma, P. A. Weil, and R. G. Roeder. 1990. Analysis of the structure-function relationships of yeast TATA box binding factor TFIID. Cell 61:1171–1178.
  • Johnston, M., and R. W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1440–1448.
  • Jones, J. S., and L. Prakash. 1990. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6:363–366.
  • Kao, C. C., P. M. Lieberman, M. C. Schmidt, Q. Zhou, R. Pei, and A. J. Berk. 1990. Cloning of a transcriptionally active human TATA binding factor. Science 248:1646–1650.
  • Karin, M., R. Najarían, A. Haslinger, P. Valenzuela, J. Welch, and S. Fogel. 1984. Primary structure and transcription of an amplified locus: the CUP1 locus of yeast. Proc. Natl. Acad. Sci. USA 81:337–341.
  • Kassavetis, G., C. A. P Joazeiro, M. Pisano, E. P. Geiduschek, T. Colbert, S. Hahn, and J. A. Blanco. 1992. The role of the TATA binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIB. Cell 71:1055–1064.
  • Kelleher, R. J., P. M. Flanagan, D. I. Chasman, A. S. Ponticelli, K. Strahl, and R. D. Kornberg. 1992. Yeast and human TFIID’s are interchangeable for the response to acidic transcriptional activators in vitro. Genes Dev. 6:296–303.
  • Kenna, M., A. Stevens, M. McCammon, and M. G. Douglas. 1993. An essential yeast gene with homology to the exonucle-ase-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity. Mol. Cell. Biol. 13:341–350.
  • Kohrer, K., and H. Domdey. 1991. Preparation of high molecular weight RNA. Methods Enzymol. 194:398–404.
  • Koleske, A. J., S. Buratowski, M. Nonet, and R. A. Young. 1992. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69:883–894.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Mikami, K. 1991. Unpublished data.
  • Mortimer, R. K., D. Schild, C. R. Contopoulou, and J. A. Kans. 1991. Genetic and physical maps of Saccharomyces cerevisiae. Methods Enzymol. 194:827–864.
  • Muhich, M. L., C. T. lida, M. Horikoshi, R. G. Roeder, and C. S. Parker. 1990. cDNA clone encoding the Drosophila transcription factor TFIID. Proc. Natl. Acad. Sci. USA 87:9148–9152.
  • Nasmyth, K., and K. Tatchell. 1980. The structure of transposable yeast mating type loci. Cell 19:753–764.
  • Ng, R., and J. Abelson. 1980. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77:3912–3916.
  • Peterson, M. G., N. Tanese, F. Pugh, and R. Tjian. 1990. Functional domains and upstream activation properties of cloned human TATA binding protein. Science 248:1625–1630.
  • Poon, D., S. Schroeder, C. K. Wang, T. Yamamoto, M. Horikoshi, R. G. Roeder, and A. Weil. 1991. The conserved carboxyterminal domain of Saccharomyces cerevisiae TFIID is sufficient to support normal cell growth. Mol. Cell. Biol. 11:4809–4821.
  • Pugh, B. F., and R. Tjian. 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61:1187–1197.
  • Reddy, P., and S. Hahn. 1991. Dominant negative mutations of yeast TFIID define a bipartite DNA-binding region. Cell 65:349–357.
  • Reinberg, D., M. Horikoshi, and R. G. Roeder. 1987. Factors involved in specific transcription by mammalian RNA poly-merase II. J. Biol. Chem. 262:3322–3330.
  • Riles, L., and M. Olson. 1992. Personal communication.
  • Rose, M. D., F. Winston, and P. Hoeter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Schmidt, M. C., C. C. Kao, R. Pei, and A. J. Berk. 1989. Yeast TATA-box transcription factor gene. Proc. Natl. Acad. Sci. USA 86:7785–7789.
  • Schultz, M. C., S. Y. Choe, and R. H. Reeder. 1991. Specific initiation by RNA polymerase I in a whole cell extract from yeast. Proc. Natl. Acad. Sci. USA 88:1004–1008.
  • Schultz, M. C., R. H. Reeder, and S. Hahn. 1992. Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II and III promoters. Cell 69:697–702.
  • Tamura, T., K. Sumita, I. Fujino, M. Horikoshi, A. Hoffmann, R. G. Roeder, M. Muramatsu, and K. Mikoshiba. 1991. Striking homology of the “variable” N-terminal as well as the “conserved core” domains of the mouse and human TATA-factors (TFIID). Nucleic Acids Res. 19:3861–3865.
  • Thiele, D. J. 1988. ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol. Cell. Biol. 8:2745–2752.
  • Tillman, T., and M. C. Schmidt. Unpublished data.
  • Wada, K., Y. Wada, F. Ishibashi, T. Gojobori, and T. Ikemura. 1992. Codon usage tabulated from the GenBank genetic se-quence data. Nucleic Acids Res. 20(Suppl.):2111–2118.
  • White, R. J., S. P. Jackson, and P. W. J. Rigby. 1992. A role for the TATA-box binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor. Proc. Natl. Acad. Sci. USA 89:1949–1953.
  • Wong, J. M., F. Liu, and E. Bateman. 1992. Cloning and expression of the Acanthamoeba castellami gene encoding tran-scription factor TFIID. Gene 117:91–97.
  • Zawel, L., and D. Reinberg. 1992. Advances in RNA polymerase II transcription. Curr. Opin. Cell Biol. 4:488–495.
  • Zhou, Q., M. C. Schmidt, P. M. Lieberman, and A. J. Berk. 1991. Requirement for acidic amino acid residues immediately N-terminal to the conserved domain of S. cerevisiae. EMBO J. 10:1843–1852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.