6
Views
45
CrossRef citations to date
0
Altmetric
Gene Expression

The Cardiac troponin T Alternative Exon Contains a Novel Purine-Rich Positive Splicing Element

, &
Pages 3660-3674 | Received 14 Jan 1993, Accepted 23 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Adami, G. R., and G. G. Carmichael. 1987. The length but not the sequence of the polyoma virus later leader exon is important for both late RNA splicing and stability. Nucleic Acids Res. 15:2593–2610.
  • Black, D. L. 1991. Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-neuronal cells? Genes Dev. 5:389–402.
  • Brunak, S., J. Engelbrecht, and S. Knudsen. 1991. Prediction of human mRNA donor and acceptor sites from the DNA se-quence. J. Mol. Biol. 220:49–65.
  • Chain, A. C., S. Zollman, J. C. Tseng, and F. A. Laski. 1991. Identification of a cis-acting sequence required for germ linespecific splicing of the P element ORF2-ORF3 intron. Mol. Cell. Biol. 11:1538–1546.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Cheng, J., P. M. Fogel, and L. E. Maquat. 1990. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triosephosphate isomerase mRNA. Mol. Cell. Biol. 10:5215–5225.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-choroform extraction. Anal. Biochem. 162:156–159.
  • Cooper, T. A. 1992. In vitro splicing of cardiac troponin-T precursors—exon mutations disrupt splicing of the upstream intron. J. Biol. Chem. 267:5330–5338.
  • Cooper, T. A., M. H. Cardone, and C. P. Ordahl. 1988. Cis requirements for alternative splicing of the cardiac troponin T pre-mRNA. Nucleic Acids Res. 16:8443–8465.
  • Cooper, T. A., and C. P. Ordahl. 1984. A single cardiac troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science 226:979–982.
  • Cooper, T. A., and C. P. Ordahl. 1985. A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J. Biol. Chem. 260:11140–11148.
  • Cooper, T. A., and C. P. Ordahl. 1989. Nucleotide substitutions within the cardiac troponin T alternative exon disrupt pre-mRNA alternative splicing. Nucleic Acids Res. 17:7905–7921.
  • Cote, G. J., D. T. Stolow, S. Peleg, S. M. Berget, and R. F. Gagel. 1992. Identification of exon sequences and an exon binding protein involved in alternative RNA splicing of calcitonin/CGRP. Nucleic Acids Res. 20:2361–2366.
  • Domenjoud, L., H. Gallinaro, L. Kister, S. Meyer, and M. Jacob. 1991. Identification of a specific exon sequence that is a major determinant in the selection between a natural and a cryptic 5′ splice site. Mol. Cell. Biol. 11:4581–4590.
  • Dominski, Z., and R. Kole. 1991. Selection of splice sites in pre-mRNAs with short internal exons. Mol. Cell. Biol. 11:6075–6083.
  • Dominski, Z., and R. Kole. 1992. Cooperation of pre-mRNA sequence elements in splice site selection. Mol. Cell. Biol. 12:2108–2114.
  • Eperon, L. P., J. P. Estibeiro, and I. C. Eperon. 1986. The role of nucleotide sequences in splice site selection in eukaryotic pre-messenger RNA. Nature (London) 324:280–282.
  • Fornwald, J. A., G. Kuncio, I. Peng, and C. P. Ordahl. 1982. The complete nucleotide sequence of the chick α-actin gene and its evolutionary relationship to the actin gene family. Nucleic Acids Res. 10:3861–3876.
  • Fu, X. D., R. A. Katz, A. M. Skalka, and T. Maniatis. 1991. The role of branchpoint and 3′-exon sequences in the control of balanced splicing of avian retrovirus RNA. Genes Dev. 5:211–220.
  • Ge, H., J. Noble, J. Colgan, and J. L. Manley. 1990. Polyoma virus small tumor antigen pre-mRNA splicing requires cooperation between two 3′ splice sites. Proc. Natl. Acad. Sci. USA 87:3338–3342.
  • Grandchamp, B., C. Picat, F. de Rooij, C. Beaumont, P. Wilson, J. C. Deybach, and Y. Nordmann. 1989. A point mutation G→A in exon 12 of the porphobilinogen deaminase gene results in exon skipping and is responsible for acute intermittent porphyria. Nucleic Acids Res. 17:6637–6649.
  • Guthrie, C. 1991. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science 253:157–163.
  • Hampson, R. K., L. L. Follette, and F. M. Rottman. 1989. Alternative processing of bovine growth hormone mRNA is influenced by downstream exon sequence. Mol. Cell. Biol. 9:1604–1610.
  • Hedley, M. L., and T. Maniatis. 1991. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell 65:579–586.
  • Helfman, D. M., W. M. Ricci, and L. A. Finn. 1988. Alternative splicing of tropomyosin pre-mRNAs in vitro and in vivo. Genes Dev. 2:1627–1628.
  • Hoshijima, K., K. Inoue, I. Higuchi, H. Sakamoto, and Y. Shimura. 1991. Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252:833–836.
  • Jacks, T., H. D. Madhani, F. R. Masiarz, and H. E. Varmus. 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:447–458.
  • Kakizuka, A., T. Ingi, T. Murai, and S. Nakanishi. 1990. A set of Ul snRNA-complementary sequences involved in governing alternative RNA splicing of the kininogen genes. J. Biol. Chem. 265:10102–10108.
  • Katz, R. A., and A. M. Skalka. 1990. Control of retroviral RNA splicing through maintenance of suboptimal processing signals. Mol. Cell. Biol. 10:696–704.
  • Krainer, A. R., and T. Maniatis. 1988. RNA splicing, p. 131–207. In B. D. Hames and D. M. Glover (ed.), Frontiers in molecular biology: transcription and splicing. IRL Press, Oxford.
  • Kreivi, J. P., K. Zefrivitz, and G. Akusjarvi. 1991. A Ul snRNA binding site improves the efficiency of in vitro pre-messenger RNA splicing. Nucleic Acids Res. 19:6956.
  • Lamb, R. A., and C. M. Horvath. 1991. Diversity of coding strategies in influenza virus. Trends Genet. 7:261–266.
  • Lear, A. L., L. P. Eperon, I. M. Wheatley, and I. C. Eperon. 1990. Hierarchy for 5′ splice site preference determined in vivo. J. Mol. Biol. 211:103–115.
  • Libri, D., M. Goux-Pelletan, E. Brody, and M. Y. Fiszman. 1990. Exon as well as intron sequences are cis-regulating elements for the mutually exclusive alternative splicing of the β tropomyosin gene. Mol. Cell. Biol. 10:5036–5046.
  • Ligtenberg, M. J., A. M. Gennissen, H. L. Vos, and J. Hilkens. 1990. A single nucleotide polymorphism in an exon dictates allele dependent differential splicing of episialin mRNA. Nucleic Acids Res. 19:297–301.
  • Mar, J. H., P. B. Antin, T. A. Cooper, and C. P. Ordahl. 1988. Analysis of the upstream regions governing expression of the chicken cardiac troponin T gene in embryonic cardiac and skeletal muscle cells. J. Cell Biol. 107:573–585.
  • Mardon, H. J., G. Sebastio, and F. E. Barralle. 1987. A role for exon sequence in alternative splicing of the human fibronectin gene. Nucleic Acids Res. 15:7725–7733.
  • Matsuo, M., T. Masumura, H. Nishio, T. Nakajima, Y. Kitoh, T. Takumi, J. Koga, and H. Nakamura. 1991. Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystro-phy kobe. J. Clin. Invest. 87:2127–2131.
  • Mineo, I., and E. W. Holmes. 1991. Exon recognition and nucleocytoplasmic partitioning determine AMPD1 alternative transcript production. Mol. Cell. Biol. 11:5356–5363.
  • Mitchell, P. J., G. Urlaub, and L. Chasin. 1986. Spontaneous splicing mutations at the dihydrofolate reductase locus in Chi-nese hamster ovary cells. Mol. Cell. Biol. 6:1926–1935.
  • Naeger, L. K., R. V. Schoborg, Q. H. Zhao, G. E. Tullis, and D. J. Pintel. 1992. Nonsense mutations inhibit splicing of MVM RNA in cis when they interrupt the reading frame of either exon of the final spliced product. Genes Dev. 6:1107–1119.
  • Nagoshi, R. N., and B. S. Baker. 1990. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes Dev. 4:89–97.
  • Nasim, F. H., P. A. Spears, H. M. Hoffmann, H. C. Kuo, and P. J. Grabowski. 1990. A sequential splicing mechanism pro-motes selection of an optimal exon by repositioning a downstream 5′ splice site in preprotachykinin pre-mRNA. Genes Dev. 4:1172–1184.
  • Nelson, K. K., and M. R. Green. 1988. Splice site selection and ribonucleoprotein complex assembly during in vitro pre-mRNA splicing. Genes Dev. 2:319–329.
  • Nikovits, W., G. Kuncio, and C. P. Ordahl. 1986. The chicken fast skeletal troponin I gene: exon organization and sequence. Nucleic Acids Res. 14:3377–3390.
  • Ohshima, Y., and Y. Gotoh. 1987. Signals for the selection of a splice site in pre-mRNA. J. Mol. Biol. 195:247–259.
  • Ramchatesingh, J., and T. Cooper. Unpublished data.
  • Recio, L., D. Simpson, J. Cochrane, H. Liber, and T. R. Skopek. 1990. Molecular analysis of hprt mutants induced by 2-cyano- ethylene oxide in human lymphoblastoid cells. Mutat. Res. 242:195–208.
  • Reed, R., and T. Maniatis. 1986. A role for exon sequence and splice-site proximity in splice-site selection. Cell 46:681–690.
  • Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Senapathy, P., M. B. Shapiro, and N. L. Harris. 1990. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 183:252–278.
  • Siebel, C. W., and D. C. Rio. 1990. Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression. Science 248:1200–1208.
  • Smith, C. W. J., J. G. Patton, and B. N. Ginard. 1989. Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23:527–577.
  • Somasekhar, M. B., and J. E. Mertz. 1985. Exon mutations that affect the choice of splice sites used in processing the SV40 late transcripts. Nucleic Acids Res. 13:5591–5609.
  • Steingrimsdottir, H., G. Rowley, G. Dorado, J. Cole, and A. R. Lehmann. 1992. Mutations which alter splicing in the human hypoxanthine-guanine phosphoribosyltransferase gene. Nucleic Acids Res. 20:1201–1208.
  • Steitz, J. A., D. L. Black, V. Gerke, K. A. Parker, A. Kramer, D. Frendwey, and W. Keller. 1988. Function of the abundant U-snRNPs, p. 115–153. In M. L. Bimstiel (ed.), Structure and function of the major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin.
  • Streuli, M., and H. Saito. 1989. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splic-ing of leukocyte common antigen pre-mRNA. EMBO J. 8:787–796.
  • Strohman, R. C., E. Bayne, D. Spector, T. Obinata, J. Micou-Eastwood, and A. Maniotis. 1990. Myogensis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell. Dev. Biol. 26:201–208.
  • Talerico, M., and S. M. Berget. 1990. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10:6299–6305.
  • Tian, M., and T. Maniatis. 1992. Positive control of pre-messenger-RNA splicing in vitro. Science 256:237–240.
  • Tsai, A. Y., M. Streuli, and H. Saito. 1989. Integrity of the exon 6 sequence is essential for tissue-specific alternative splicing of human leukocyte common antigen pre-mRNA. Mol. Cell. Biol. 9:4550–4555.
  • Urlaub, G., P. J. Mitchell, C. J. Ciudad, and L. A. Chasin. 1989. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Mol. Cell. Biol. 9:2868–2880.
  • Vellard, M., A. Sureau, J. Soret, C. Martinerie, and B. Perbal. 1992. A potential splicing factor is encoded by the opposite strand of the trans-spliced c-myb exon. Proc. Natl. Acad. Sci. USA 89:2511–2515.
  • Vidaud, M., R. Gattoni, J. Stevenin, D. Vidaud, S. Amselem, J. Chibani, J. Rosa, and M. Goossens. 1989. A 5′ splice-region G→C mutation in exon 1 of the human β-globin gene inhibits pre-mRNA splicing: a mechanism for β+ thalassemia. Proc. Natl. Acad. Sci. USA 86:1041–1045.
  • Wakamatsu, N., H. Kobayashi, T. Miyatake, and S. Tsuji. 1992. A novel exon mutation in the human beta-hexosaminidase beta subunit gene affects 3′ splice site selection. J. Biol. Chem. 267:2406–2413.
  • Weil, D., M. D’Alessio, F. Ramirez, W. de Wet, W. G. Cole, D. Chan, and J. F. Bateman. 1989. A base substitution in the exon of a collagen gene causes alternative splicing and generates a structurally abnormal polypeptide in a patient with Ehlers-Danlos syndrome type VII. EMBO J. 8:1705–1710.
  • Xie, W., and L. I. Rothblum. 1991. Rapid, small-scale RNA isolation from tissue culture cells. BioTechniques 11:325–327.
  • Xu, R., and T. A. Cooper. Unpublished data.
  • Zhang, L. H., H. Vrieling, Z. A. A. van Zeeland, and D. Jenssen. 1992. Spectrum of spontaneously occurring mutations in the hprt gene of V79 Chinese hamster cells. J. Mol. Biol. 223:627–635.
  • Zhuang, Y., and A. M. Weiner. 1990. The conserved dinucleotide AG of the 3′ splice site may be recognized twice during in vitro splicing of mammalian mRNA precursors. Gene 90:263–269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.