2
Views
13
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Full Activation of p34CDC28 Histone H1 Kinase Activity Is Unable To Promote Entry into Mitosis in Checkpoint-Arrested Cells of the Yeast Saccharomyces cerevisiae

, , &
Pages 3744-3755 | Received 02 Nov 1992, Accepted 23 Mar 1993, Published online: 01 Apr 2023

REFERENCES

  • Amon, A., U. Surana, M. Ivor, and K. Nasmyth. 1992. Regulation of p34cdc28 tyrosine phosphorylation is not required for entry into mitosis in 5. cerevisiae. Nature (London) 355:368–394.
  • Byers, B. 1981. Cytology of the yeast life cycle, p. 59–96. In J. N. Strathem, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Cismowski, M. J., and S. I. Reed. Unpublished data.
  • Dasso, M., and J. W. Newport. 1990. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61:811–823.
  • Doree, M. 1990. Control of M-phase by maturation-promoting factor. Curr. Opin. Cell Biol. 2:269–273.
  • Enoch, T., and P. Nurse. 1990. Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60:665–673.
  • Fitch, I., C. Dahman, U. Surana, A. Amon, K. Nasmyth, L. Goetsch, B. Byers, and B. Futcher. 1992. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 3:805–818.
  • Ghiara, J. B., H. E. Richardson, K. Sugimoto, M. Henze, D. J. Lew, C. Wittenberg, and S. I. Reed. 1991. A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65:163–174.
  • Gould, K., and P. Nurse. 1989. Tyrosine phosphorylation of the fission yeast cdc2± protein kinase regulates entry into mitosis. Nature (London) 342:39–45.
  • Grandin, N., and S. I. Reed. 1993. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol. Cell. Biol. 13:2113–2125.
  • Hadwiger, J. A., C. Wittenberg, M. D. Mendenhall, and S. I. Reed. 1989. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe sud+ gene, encodes a subunit of the Cdc28 protein kinase complex. Mol. Cell. Biol. 9:2034–2041.
  • Hartwell, L. H., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Hunt, T. 1989. Maturation promoting factor, cyclin and the control of M-phase. Curr. Opin. Cell Biol. 1:268–274.
  • Kumagai, A., and W. G. Dunphy. 1991. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 64:903–914.
  • Labbe, J. C., J.-P. Capony, D. Caput, J. C. Cavadore, J. Derancourt, M. Kaghad, J.-M. Lelias, A. Picard, and M. Doree. 1989. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J. 8:3053–3058.
  • Lew, D. J., N. J. Marini, and S. I. Reed. 1992. Different G1 cyclins control the timing of cell cycle commitment in mother and daughter cells in the budding yeast Saccharomyces cerevisiae. Cell 69:317–327.
  • Lew, D. J., and S. I. Reed. 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120:1305–1320.
  • Lundgren, K., N. Walworth, R. Booher, M. Dembski, M. Kirschner, and D. Beach. 1991. mikl and weel cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64:1111–1122.
  • Mailer, J. 1991. Mitotic control. Curr. Opin. Cell Biol. 3:269–275.
  • Murray, A. W., and M. W. Kirschner. 1989. Dominoes and clocks: the union of two views of the cell cycle. Science 246:614–621.
  • Nigg, E. A. 1991. The substrates of the cdc2 kinase. Semin. Cell Biol. 2:261–270.
  • Nurse, P. 1990. Universal control mechanism regulating onset of M-phase. Nature (London) 344:503–508.
  • Pringle, J. R., A. E. M Adams, D. G. Drubin, and B. K. Haarer. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194:565–602.
  • Richardson, H. E., D. J. Lew, M. Henze, K. Sugimoto, and S. I. Reed. 1992. Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev. 6:2021–2034.
  • Richardson, H. E., C. Wittenberg, F. R. Cross, and S. I. Reed. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133.
  • Russell, P., S. Moreno, and S. I. Reed. 1989. Conservation of mitotic controls in fission and budding yeast. Cell 57:295–303.
  • Sclafani, R. A., and W. L. Fangman. 1984. Yeast gene CDC8 encodes thymidylate kinase and is complemented by the herpes thymidine kinase gene TK. Proc. Natl. Acad. Sci. USA 81:5821–5825.
  • Smythe, C., and J. W. Newport. 1992. Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34cdc2. Cell 68:787–797.
  • Sorger, P. K., and A. W. Murray. 1992. S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature (London) 355:365–368.
  • Surana, U., H. Robitsch, C. Price, T. Shuster, I. Fitch, A. B. Futcher, and K. Nasmyth. 1991. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145–161.
  • Weinert, T. A., and L. H. Hartwell. 1988. The RAD9 gene controls the cell cycle response to DNA damage in S. cerevisiae. Science 241:317–322.
  • Wittenberg, C., and S. I. Reed. 1988. Control of the yeast cell cycle is associated with assembly/disassembly of the Cdc28 protein kinase complex. Cell 54:1061–1072.
  • Wittenberg, C., S. L. Richardson, and S. I. Reed. 1987. Subcellular localization of a protein kinase required for cell cycle initiation in Saccharomyces cerevisiae: evidence for an association between the CDC28 gene product and the insoluble cytoplasmic matrix. J. Cell Biol. 105:1527–1538.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.