1
Views
8
CrossRef citations to date
0
Altmetric
Gene Expression

The Hexokinase Gene Is Required for Transcriptional Regulation of the Glucose Transporter Gene RAG1 in Kluyveromyces lactis

, , , &
Pages 3882-3889 | Received 06 Jan 1993, Accepted 12 Apr 1993, Published online: 31 Mar 2023

REFERENCES

  • Albig, W., and K. D. Entian. 1988. Structure of yeast glucoki-nase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Gene 73:141–152.
  • Bianchi, M. M., C. Falcone, X. J. Chen, M. Wesolowski-Louvel, L. Frontali, and H. Fukuhara. 1987. Transformation of Ktuyveromyces lactis by new vectors derived from a 1.6 μm circular plasmid of yeast. Curr. Genet. 12:185–192.
  • Bisson, L. F. 1988. High-affinity glucose transport in Saccharomyces cerevisiae under general glucose repression control. J. Bacteriol. 170:4838–4845.
  • Bisson, L. F., and D. G. Fraenkel. 1983. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:1730–1734.
  • Bisson, L. F., and D. G. Fraenkel. 1983. Transport of 6-deoxy-glucose in Saccharomyces cerevisiae. J. Bacteriol. 155:995–1000.
  • Bisson, L. F., and D. G. Fraenkel. 1984. Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae. J. Bacteriol. 159:1013–1017.
  • Breunig, K. D. 1989. Glucose repression of LAC gene expression in yeast is mediated by the transcriptional activator LAC9. Mol. Gen. Genet. 216:422–427.
  • Celenza, J. L., L. Marshall-Carlson, and M. Carlson. 1988. The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc. Natl. Acad. Sci. USA 85:2130–2134.
  • Chen, X. J.. 1988. Etude du plasmide pKDl et developpement de systemes d'expression de genes chez la levure Kluyveromyces lactis. Ph.D thesis. Universite de Paris-Sud, Orsay, France.
  • Chen, X. J., M. Wesolowski-Louvel, and H. Fukuhara. 1992. Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Mol. Gen. Genet. 233:97–105.
  • Clifton, D., S. B. Weinstock, and D. G. Fraenkel. 1978. Glyco-lysis mutants in Saccharomyces cerevisiae. Genetics 88:1–11.
  • Entian, K. D. 1980. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol. Gen. Genet. 178:633–637.
  • Entian, K. D., and K. U. Frohlich. 1984. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunc-tional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. J. Bacteriol. 158:29–35.
  • Entian, K. D., F. Hilberg, H. Opitz, and D. Mecke. 1985. Cloning of hexokinase structural genes from Saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression. Mol. Cell. Biol. 5:3035–3040.
  • Falcone, C., M. Saliola, X. J. Chen, L. Frontali, and H. Fukuhara. 1986. Analysis of a 1,6 μm circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15:248–252.
  • Frohlich, K. U., K. D. Entian, and D. Mecke. 1985. The primary structure of the yeast hexokinase PII gene (HXK2) which is responsible for glucose repression. Gene 36:105–111.
  • Gancedo, J. M., D. Clifton, and D. G. Fraenkel. 1977. Yeast hexokinase mutants. J. Biol. Chem. 252:4443–4444.
  • Goffrini, P., A. A. Algeri, C. Donnini, M. Wésolowski-Louvel, and I. Ferrero. 1989. RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for the growth on sugars. Yeast 5:99–106.
  • Goffrini, P., M. Wlsolowski-Louvel, I. Ferrero, and H. Fuku-hara. 1990. RAG1 gene of the yeast Kluyveromyces lactis codes for a sugar transporter. Nucleic Acids Res. 18:5294.
  • Gonzalez, M. I., R. Stucka, M. A. Blazquez, H. Feldmann, and C. Gancedo. 1992. Molecular cloning of CIF1, a yeast gene necessary for growth on glucose. Yeast 8:183–192.
  • Heus, J. J., B. J. M. Zonneveld, H. Y. Steensma, and J. A. Van den Berg. 1990. Centromeric DNA of Kluyveromyces lactis. Curr. Genet. 18:517–522.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kopetski, E., K. D. Entian, and D. Mecke. 1985. Complete nucleotide sequence of the hexokinase PI gene (HXK1) of Saccharomyces cerevisiae. Gene 39:95–102.
  • Kruckeberg, A. L., and L. F. Bisson. 1990. The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol. Cell. Biol. 10:5903–5913.
  • Kuzhandaivelu, N., W. K. Jones, A. K. Martin, and R. C. Dickson. 1992. The signal for glucose repression of the lactose-galactose regulon is amplified through subtle modulation of transcription of the Kluyveromyces KI-GAL4 activator gene. Mol. Cell. Biol. 12:1924–1931.
  • Lang, J. M., and V. P. Cirillo. 1987. Glucose transport in a kinaseless Saccharomyces cerevisiae mutant. J. Bacteriol. 169:2932–2937.
  • Lewis, D. A., and L. F. Bisson. 1991. The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol. Cell. Biol. 11:3804–3813.
  • Lobo, Z., and P. K. Maitra. 1977. Genetics of yeast hexokinase. Genetics 86:727–744.
  • Ma, H., L. M. Bloom, C. T. Walsh, and D. Botstein. 1989. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:5643–5649.
  • Maitra, P. K. 1970. A glucokinase from Saccharomyces cerevisiae. J. Biol. Chem. 245:2423–2431.
  • Maitra, P. K., and Z. Lobo. 1983b. Genetics of yeast glucoki-nase. Genetics 105:501–515.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • McCann, A. K., F. Hilberg, P. Kenworthy, and J. A. Barnett. 1987. An unusual hexose-ATP-kinase with two catalytic sites and a role in carbon catabolite repression in the yeast Schwanniomyces occidentalis. J. Gen. Microbiol. 133:381–390.
  • Meilhoc, E., J. M. Masson, and J. Teissie. 1990. High efficiency transformation of intact yeast cells by electric field pulses. Bio/Technology 8:223–227.
  • Nehlin, J. O., and H. Ronne. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumor finger proteins. EMBO J. 9:2891–2898.
  • Rose, M., W. Albig, and K. D. Entian. 1991. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur. J. Biochem. 199:511–518.
  • Royt, P. W., and A. M. MacQuillan. 1976. Evidence for an inducible glucose transport system in Kluyveromyces lactis. Biochim. Biophys. Acta 426:302–316.
  • Stachelek, C., J. Stachelek, J. Swan, D. Botstein, and W. Konigsberg. 1986. Identification, cloning and sequence determi-nation of the genes specifying hexokinase A and B from yeast. Nucleic Acids Res. 14:945–963.
  • Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630.
  • Thevelein, J. M. 1992. The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie van Leeuwenhoek J. Microbiol (special issue) 62:109–130.
  • Van Aelst, L., S. Hohmann, F. K. Zimmermann, A. W. H. Hans, and J. M. Thevelein. 1991. A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyces cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBO J. 10:2095–2104.
  • Walsh, R. B., D. Clifton, J. Horak, and D. G. Fraenkel. 1991. Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression. Genetics 128:521–527.
  • Wesolowski, M., A. A. Algeri, P. Goffrini, and H. Fukuhara. 1982. Killer DNA plasmids of the yeast Kluyveromyces lactis. I. Mutations affecting the killer phenotype. Curr. Genet. 150:137–140.
  • Wesolowski-Louvel, M., P. Goffrini, I. Ferrero, and H. Fuku-hara. 1992. Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. Mol. Gen. Genet. 233:89–96.
  • Wesolowski-Louvel, M., C. Prior, D. Bornecque, and H. Fuku-hara. 1992. Rag" mutations involved in glucose metabolism in yeast: isolation and genetic characterization. Yeast 8:711–719.
  • Wesolowski-Louvel, M., C. Tanguy-Rougeau, and H. Fukuhara. 1988. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4:71–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.