3
Views
19
CrossRef citations to date
0
Altmetric
Gene Expression

An Enhancer/Locus Control Region Is Not Sufficient To Open Chromatin

, , &
Pages 3990-3998 | Received 04 Feb 1993, Accepted 09 Apr 1993, Published online: 31 Mar 2023

REFERENCES

  • Allen, N. D., D. G. Cran, S. C. Barton, S. Hettle, W. Reik, and M. A. Surani. 1988. Transgenes as probes for active chromo-somal domains in mouse development. Nature (London) 333:852–855.
  • Aparicio, O. M., B. L. Billington, and D. E. Gottschling. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287.
  • Archer, T. K., P. Lefebvre, R. G. Wolford, and G. L. Hager. 1992. Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576.
  • Ballabio, A., and H. F. Willard. 1992. Mammalian X-chromo-some inactivation and the XIST gene. Curr. Opin. Genet. Dev. 2:439–447.
  • Behringer, R. R., T. M. Ryan, R. D. Palmiter, R. L. Brinster, and T. M. Townes. 1990. Human γ- to β-globin switching in transgenic mice. Genes Dev. 4:380–389.
  • Bonnerot, C., G. Grimber, P. Briand, and J.-F. Nicolas. 1990. Patterns of expression of position-dependent integrated trans-genes in mouse embryo. Proc. Natl. Acad. Sci. USA 87:6331–6335.
  • Caterina, J. J., T. M. Ryan, K. M. Pawlik, R. D. Palmiter, R. L. Brinster, R. R. Behringer, and T. M. Townes. 1991. Human β-globin locus control region: analysis of the 5' DNase I hypersensitive site HS 2 in transgenic mice. Proc. Natl. Acad. Sci. USA 88:1626–1630.
  • Cheng, T.-C, S. K. Plomar, and H. H. Kazazian. 1974. Isolation and characterization of modified globin messenger ribonucleic acid from erythropoietic mouse spleen. J. Biol. Chem. 249:1781–1786.
  • Choi, O.-R. B., and J. D. Engel. 1988. Developmental regulation of β-globin gene switching. Cell 55:17–26.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloro-form extraction. Anal. Biochem. 162:156–159.
  • Elgin, S. C. R. 1988. The formation and function of DNase I hypersensitive sites in the process of gene activation. J. Biol. Chem. 263:19259–19262.
  • Ellis, J., D. Talbot, N. Dillon, and F. Grosveld. 1993. Synthetic human β-globin 5' HS2 constructs function as locus control regions only in multicopy transgene concatamers. EMBO J. 12:127–134.
  • Enver, T., N. Raich, A. J. Ebens, T. Papayannopoulou, F. Costantini, and G. Stamatoyannopoulos. 1990. Developmental regulation of human fetal-to-adult globin switching in transgenic mice. Nature (London) 344:309–313.
  • Evans, T.. Unpublished data.
  • Evans, T., G. Felsenfeld, and M. Reitman. 1990. Control of globin gene transcription. Annu. Rev. Cell Biol. 6:95–124.
  • Felsenfeld, G. 1992. Chromatin as an essential part of the transcriptional mechanism. Nature (London) 355:219–224.
  • Fineberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Foley, K. P., and J. D. Engel. 1992. Individual stage selector element mutations lead to reciprocal changes in β- vs. ɛ-globin gene transcription: genetic confirmation of promoter competition during globin gene switching. Genes Dev. 6:730–744.
  • Forrester, W. C, E. Epner, M. C. Driscoll, T. Enver, M. Brice, T. Papayannopoulou, and M. Groudine. 1990. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev. 4:1637–1649.
  • Forrester, W. C, S. Takegawa, T. Papayannopoulou, G. Stam-atoyannopoulos, and M. Groudine. 1987. Evidence for a locus activation region: the formation of developmentally stable hy-persensitive sites in globin-expressing hybrids. Nucleic Acids Res. 15:10159–10177.
  • Fort, P., L. Marty, M. Piechaczyk, S. El Sabrouty, C. Dani, P. Jeanteur, and J. M. Blanchard. 1985. Various rat adult tissues express only one major mRNA species from the glyceralde-hyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 13:1431–1442.
  • Fraser, P., J. Hurst, P. Collis, and F. Grosveld. 1990. DNase I hypersensitive sites 1, 2, and 3 of the human β-globin dominant control region direct position-independent expression. Nucleic Acids Res. 18:3503–3508.
  • Gottschling, D. E., O. M. Aparicio, B. L. Billington, and V. A. Zakian. 1990. Position effect at S. cerevisiae telomeres: revers-ible repression of pol II transcription. Cell 63:751–762.
  • Gross, D. S., and W. T. Garrard. 1988. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57:159–197.
  • Grosveld, F., G. Blom van Assendelft, D. Greaves, and G. Kollias. 1987. Position-independent, high level expression of the human β-globin gene in transgenic mice. Cell 51:975–985.
  • Grunstein, M. 1990. Histone function in transcription. Annu. Rev. Cell Biol. 6:643–678.
  • Hanscombe, O., D. Whyatt, P. Fraser, N. Yannoutsos, D. Greaves, N. Dillon, and F. Grosveld. 1991. Importance of globin gene order for correct developmental expression. Genes Dev. 5:1387–1394.
  • Hayes, J. J., and A. P. Wolffe. 1992. The interaction of tran-scription factors with nucleosomal DNA. Bioessays 14:597–603.
  • Hogan, B., F. Costantini, and E. Lacy. 1986. Manipulating the mouse embryo. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
  • Jackson, P. D., T. Evans, J. M. Nickol, and G. Felsenfeld. 1989. Developmental modulation of protein binding to β-globin gene regulatory sites within chicken erythrocyte nuclei. Genes Dev. 3:1860–1873.
  • Jaenisch, R. 1988. Transgenic animals. Science 240:1468–1474.
  • Jimenez, G., S. D. Griffiths, A. M. Ford, M. F. Greaves, and T. Enver. 1992. Activation of the β-globin locus control region precedes commitment to the erythroid lineage. Proc. Natl. Acad. Sci. USA 89:10618–10622.
  • Kim, C. G., E. M. Epner, W. C. Forrester, and M. Groudine. 1992. Inactivation of the human β-globin gene by targeted insertion into the β-globin locus control region. Genes Dev. 6:928–938.
  • King, C. R., and J. Piatigorsky. 1983. Alternative RNA splicing of the murine αA-crystallin gene: protein-coding information within an intron. Cell 32:707–712.
  • Kioussis, D., E. Vanin, T. deLange, R. A. Flavell, and F. G. Grosveld. 1983. β-Globin gene inactivation by DNA translocation in γp-thalassaemia. Nature (London) 306:662–666.
  • Lawson, G. M., B. J. Knoll, C. J. March, S. L. C. Woo, M.-J. Tsai, and B. W. O'Malley. 1983. Definition of 5' and 3' structural boundaries of the chromatin domain containing the ovalbumin multigene family. J. Biol. Chem. 257:1501–1507.
  • Lee, M.-S., and W. T. Garrard. 1992. Uncoupling gene activity from chromatin structure: promoter mutations can inactivate transcription of the yeast HSP82 gene without eliminating nucleosome-free regions. Proc. Natl. Acad. Sci. USA 89:9166–9170.
  • Lowrey, C. H., D. M. Bodine, and A. W. Nienhuis. 1992. Mechanism of DNase I hypersensitive site formation within the human globin locus control region. Proc. Natl. Acad. Sci. USA 89:1143–1147.
  • Orkin, S. H. 1990. Globin gene regulation and switching: circa 1990. Cell 63:665–672.
  • Porter, S., L. Larue, and B. Mintz. 1991. Mosaicism of tyrosi-nase-locus transcription and chromatin structure in dark vs. light melanocyte clones of homozygous chinchilla-mottled mice. Dev. Genet. 12:393–402.
  • Radice, G., and F. Costantini. 1986. Tissue-specific DNase I hypersensitive sites in a foreign gene in transgenic mice. Nu-cleic Acids Res. 14:9765–9780.
  • Reitman, M., and G. Felsenfeld. 1990. Developmental regulation of topoisomerase II sites and DNase I-hypersensitive sites in the chicken β-globin locus. Mol. Cell. Biol. 10:2774–2786.
  • Reitman, M., E. Lee, H. Westphal, and G. Felsenfeld. 1990. Site-independent expression of the chicken βA-globin gene in transgenic mice. Nature (London) 348:749–752.
  • Reuter, G., and P. Spierer. 1992. Position effect variegation and chromatin proteins. Bioessays 14:605–612.
  • Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim. 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354.
  • Schmid, A., K.-D. Fascher, and W. Horz. 1992. Nucleosome disruption at the yeast PHOS promoter upon PH05 induction occurs in the absence of DNA replication. Cell 71:853–864.
  • Smith, R. D., J. Yu, A. Annunziato, and R. L. Seale. 1984. β-Globin gene family in murine erythroleukemia cells resides within two chromatin domains differing in higher order structure. Biochemistry 23:2970–2976.
  • Talbot, D., and F. Grosveld. 1991. The 5'HS2 of the globin locus control region enhances transcription through the interaction of a multimeric complex binding at two functionally distinct NF-E2 binding sites. EMBO J. 10:1391–1398.
  • Talbot, D., S. Philipsen, P. Fraser, and F. Grosveld. 1990. Detailed analysis of the site 3 region of the human β-globin dominant control region. EMBO J. 7:2169–2178.
  • Townes, T., and R. R. Behringer. 1990. Human globin locus activation region (LAR): role in temporal control. Trends Genet. 6:219–223.
  • Tuan, D., W. Solomon, Q. Li, and I. M. London. 1985. The "beta-like-globin" gene domain in human erythroid cells. Proc. Natl. Acad. Sci. USA 82:6384–6388.
  • Tuan, D. Y. H., W. B. Solomon, I. M. London, and D. P. Lee. 1989. An erythroid-specific, developmental-stage-independent enhancer far upstream of the human "beta-like-globin" genes. Proc. Natl. Acad. Sci. USA 86:2554–2558.
  • Weintraub, H., H. Beug, M. Groudine, and T. Graf. 1981. Temperature-sensitive change in the structure of globin chro-matin in lines of red cell precursors transformed by ts-AEV. Cell 28:931–940.
  • Weintraub, H., and M. Groudine. 1976. Chromosomal subunits in active genes have an altered conformation. Science 193:848–856.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.