4
Views
12
CrossRef citations to date
0
Altmetric
Gene Expression

ADH2 Expression Is Repressed by REG1 Independently of Mutations That Alter the Phosphorylation of the Yeast Transcription Factor ADR1

, &
Pages 4391-4399 | Received 31 Dec 1992, Accepted 26 Apr 1993, Published online: 31 Mar 2023

REFERENCES

  • Arguelles, J. C, K. Mbonyi, L. Van Aelst, M. Vanhalewyn, A. W. H. Jans, and J. M. Thevelein. 1990. Absence of glucose-induced cAMP signalling in the Saccharomyces cerevisiae mutants cat1 and cat3 which are deficient in derepression of glucose-repressible enzymes. Arch. Microbiol. 154:199–205.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1989. Current protocols in molecular biology. John Wiley & Sons, Inc., New York.
  • Beier, D. R., and E. T. Young. 1982. Characterization of a regulatory region upstream of the ADR2 locus of S. cerevisiae. Nature (London) 300:724–728.
  • Beullens, M., K. Mbonyi, L. Geerts, D. Gladines, K. Detremerie, A. W. H. Jans, and J. M. Thevelein. 1988. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 172:227–231.
  • Bisson, L. F. 1988. High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control. J. Bacteriol. 170:4838–4845.
  • Blumberg, H. 1987. Ph.D. thesis. University of Washington, Seattle.
  • Blumberg, H., T. A. Hartshorne, and E. T. Young. 1988. Regulation of expression and activity of the yeast transcription factor ADR1. Mol. Cell. Biol. 8:1868–1876.
  • Cannon, J. F., and K. Tatchell. 1987. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 7:2653–2663.
  • Celenza, J. L., and M. Carlson. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180.
  • Cherry, J. R., T. R. Johnson, C. Dollard, J. R. Shuster, and C. L. Denis. 1989. Cyclic AMP-dependent protein kinase phos-phorylates and inactivates the yeast transcriptional activator ADR1. Cell 56:409–419.
  • Denis, C. L. 1984. Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics 108:833–844.
  • Denis, C. L. 1987. The effects oiADRl and CCR1 gene dosage on the regulation of the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. Mol. Gen. Genet. 208:101–106.
  • Denis, C. L., and D. C. Audino. 1991. The CCR1 (SNF1) and SCH9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator ADR1 in con-trolling yeast ADH2 expression. Mol. Gen. Genet. 229:395–399.
  • Denis, C. L., M. Ciriacy, and E. T. Young. 1981. A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydroge-nase from Saccharomyces cerevisiae. J. Mol. Biol. 148:355–368.
  • Denis, C. L., S. C. Fontaine, D. Chase, B. E. Kemp, and L. T. Bemis. 1992. ADR1C mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol. Cell. Biol. 12:1507–1514.
  • Denis, C. L., and C. Gallo. 1986. Constitutive RNA synthesis for the yeast activator ADR1 and identification of the ADRl-5c mutation: implications in posttranslational control of ADR1. Mol. Cell. Biol. 6:4026–4030.
  • Dombek, K. M., and E. T. Young. Unpublished data.
  • Entian, K.-D. 1981. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis. Mol. Gen. Genet. 184:278–282.
  • Entian, K.-D., and F. K. Zimmerman. 1982. New genes in-volved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. J. Bacteriol. 151:1123–1128.
  • Flick, J. S., and M. Johnston. 1990. Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:4757–4769.
  • Gancedo, J. M. 1992. Carbon catabolite repression in yeast. Eur. J. Biochem. 206:297–313.
  • Gietz, R. D., and R. H. Schiestl. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single stranded nucleic acids as carrier. Yeast 7:253–263.
  • Griggs, D. W., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101:181–191.
  • Harlow, E., and D. Lane. 1988. Antibodies, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Irani, M., W. E. Taylor, and E. T. Young. 1987. Transcription of the ADH2 gene in Saccharomyces cerevisiae is limited by positive factors that bind competitively to its intact promoter region on multicopy plasmids. Mol. Cell. Biol. 7:1233–1241.
  • Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and A. D. Johnson. 1992. Ssn6-Tupl is a general repressor of transcription in yeast. Cell 68:709–719.
  • Koerner, T. J., J. E. Hill, A. M. Myers, and A. Tzagoloff. 1991. High-expression vectors with multiple cloning sites for construction of trpE fusion genes: pATH vectors. Methods Enzymol. 194:477–490.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Matsumoto, K., I. Uno, T. Ishikawa, and Y. Oshima. 1983. Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants unable to synthesize it. J. Bacteriol. 156:898–900.
  • Matsumoto, K., T. Yoshimatsu, and Y. Oshima. 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. J. Bacteriol. 153:1405–1414.
  • Mylin, L. M., J. P. Bhat, and J. E. Hopper. 1989. Regulated phosphorylation and dephosphorylation of GAL4, a transcrip-tional activator. Genes Dev. 3:1157–1165.
  • Neigeborn, L., and M. Carlson. 1984. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858.
  • Neigeborn, L., and M. Carlson. 1987. Mutations causing consti-tutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115:247–253.
  • Niederacher, D., and K.-D. Entian. 1991. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur. J. Biochem. 200:311–319.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Meth-ods Enzymol. 101:202–211.
  • Saiki, R. K.. 1990. Amplification of genomic DNA. In M. Innis, D. Gelfand, J. Sninsky, and T. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, San Diego, Calif.
  • Schuller, H.-J., and K.-D. Entian. 1991. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J. Bacteriol. 173:2045–2052.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shuster, J., J. Yu, D. Cox, R. V. L. Chan, M. Smith, and E. Young. 1986. ADR1 -mediated regulation of ADH2 requires an inverted repeat sequence. Mol. Cell. Biol. 6:1894–1902.
  • Simon, M., M. Binder, G. Adam, A. Hartig, and H. Ruis. 1992. Control of peroxisome proliferation in Saccharomyces cerevisiae by ADR1, SNF1 (CAT1, CCR1) and SNF4 (CAT3). Yeast 8:303–309.
  • Talian, J. C, J. B. Olmstead, and R. D. Goldman. 1983. A rapid procedure for preparing fluorescein-labeled specific antibodies from whole antiserum: its use in analyzing cytoskeletal architecture. J. Cell Biol. 97:1277–1282.
  • Taylor, W. E., and E. T. Young. 1990. cAMP-dependent phos-phorylation and inactivation of yeast transcription factor ADR1 does not affect DNA binding. Proc. Natl. Acad. Sci. USA 87:4098–4102.
  • Thevelein, J. M. 1991. Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol. Microbiol. 5:1301–1307.
  • Thukral, S. K., A. Eisen, and E. T. Young. 1991. Two monomers of yeast transcription factor ADR1 bind to a palindromic sequence symmetrically to activate ADH2 expression. Mol. Cell. Biol. 11:1566–1577.
  • Thukral, S. K., M. A. Tavianini, H. Blumberg, and E. T. Young. 1989. Localization of a minimal binding domain and activation regions in yeast regulatory protein ADR1. Mol. Cell. Biol. 9:2360–2369.
  • Toda, T., S. Cameron, P. Sass, M. Zoller, J. D. Scott, B. McMullen, M. Hurwitz, E. G. Krebs, and M. Wigler. 1987. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1371–1377.
  • Trumbly, R. J. 1986. Isolation of Saccharomyces cerevisiae mutants constitutive for invertase synthesis. J. Bacteriol. 166:1123–1127.
  • Tung, K.-S., L. L. Norbeck, S. L. Nolan, N. S. Atkinson, and A. K. Hopper. 1992. SRN1, a yeast gene involved in RNA processing, is identical to HEX2/REG1, a negative regulator in glucose repression. Mol. Cell. Biol. 12:2673–2680.
  • Vallari, R. C, W. J. Cook, D. C. Audino, M. J. Morgan, D. E. Jensen, A. P. Laudano, and C. L. Denis. 1992. Glucose repres-sion of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Mol. Cell. Biol. 12:1663–1673.
  • Williamson, V. M., J. Bennetzen, E. T. Young, K. Nasmyth, and B. D. Hall. 1980. Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast. Nature (London) 283:214–216.
  • Yu, J. 1989. Ph.D. thesis. University of Washington, Seattle.
  • Yu, J., M. S. Donoviel, and E. T. Young. 1989. Adjacent upstream activation sequence elements synergistically regulate transcription of ADH2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:34–42.
  • Zaman, Z., and R. L. Verwilghen. 1979. Quantitation of proteins solubilized in sodium dodecyl sulfate-mercaptoethanol-Tris electrophoresis buffer. Anal. Biochem. 100:64–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.