10
Views
27
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Far1 and Fus3 Link the Mating Pheromone Signal Transduction Pathway to Three G1-Phase Cdc28 Kinase Complexes

&
Pages 5659-5669 | Received 08 Apr 1993, Accepted 25 Jun 1993, Published online: 31 Mar 2023

REFERENCES

  • Ammerer, G., A. Amon, L. Dirick, and K. Nasmyth. Personal communication.
  • Becker, D. Μ., and L. Guarente. 1991. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194:182–187.
  • Boulton, T. G., G. D. Yanacopoulos, J. S. Gregory, C. Slaughter, W. Moomay, J. Hsu, and Μ. H. Cobb. 1990. An insulin- stimulated kinase similar to yeast kinases involved in cell cycle control. Science 249:64–67.
  • Cairns, B. R., S. W. Ramer, and R. D. Kornberg. 1992. Order of action of components in the yeast pheromone-response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase. Genes Dev. 6:1305–1318.
  • Chang, F., and I. Herskowitz. 1990. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63:999–1011.
  • Chang, F., and I. Herskowitz. 1992. Phosphorylation of FAR1 in response to α-factor: a possible requirement for cell cycle arrest. Mol. Biol. Cell 61:445–150.
  • Courchesne, W. E., R. Kunisawa, and J. Thorner. 1989. A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell 58:1107–1119.
  • Cross, F. R. 1988. DAF1, a mutant gene affecting size control, pheromone arrest and cell cycle kinetics of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4675–4684.
  • Dolan, J. W., and S. Fields. 1990. Overproduction of the yeast STE12 protein leads to constitutive transcriptional induction. Genes Dev. 4:492–502.
  • Elion, E. A., J. A. Brill, and G. R. Fink. 1991. FUS3 represses CLNl and CLN2 and in concert with KSSl promotes signal transduction. Proc. Natl. Acad. Sci. USA 88:9392–9396.
  • Elion, E. A., P. L. Grisafi, and G. R. Fink. 1990. FUS3 encodes a cdc2∕CDC28-related kinase required for the transition from mitosis to conjugation. Cell 60:649–664.
  • Errede, B., A. Gartner, Z. Zhou, K. Nasmyth, and G. Ammerer. 1993. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature (London) 362:261–264.
  • Errede, B., and D. E. Levin. 1993. A conserved kinase cascade for MAP kinase activation in yeast. Curr. Opin. Cell Biol. 5:254–260.
  • Field, J., J. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I. Wilson, I. Lerner, and Μ. Wigler. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8:2159–2165.
  • Fujimura, H. 1990. Identification and characterization of a mutation affecting the division arrest signaling of the pheromone response pathway in Saccharomyces cerevisiae. Genetics 124:275–282.
  • Fujimura, H. 1990. Molecular cloning of the DAC2∕FUS3 gene essential for pheromone-induced Gl-arrest of the cell cycle in Saccharomyces cerevisiae. Curr. Genet. 18:395–400.
  • Gartner, A., K. Nasmyth, and G. Ammerer. 1992. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSSl. Genes Dev. 6:1280–1292.
  • Guthrie, C., and G. R. Fink. 1991. Guide to yeast genetics and molecular biology. Academic Press, New York.
  • Hadwiger, J. A., C. Wittenberg, H. E. Richardson, Μ. de Barro Lopes, and S. I. Reed. 1989. A family of cyclin homologs that control the Gl phase in yeast. Proc. Natl. Acad. Sci. USA 86:6255–6259.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Lee, Μ., and P. Nurse. 1987. Complementation used to clone a human homolog of the fission yeast cell cycle control gene cdc2+. Nature (London) 327:31–35.
  • Linskens, Μ. Unpublished data.
  • Marsh, L., A. Μ. Neiman, and I. Herskowitz. 1991. Signal transduction during pheromone response in yeast. Annu. Rev. Cell Biol. 7:699–728.
  • Nash, R., G. Tokiwa, S. Anand, K. Erickson, and B. Futcher. 1988. The WHI1+ gene in Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J. 7:4335–4346.
  • Ogas, J., B. Andrews, and I. Herskowitz. 1991. Transcriptional activation of CLNl, CLN2 and a putative new Gl cyclin (HCS26) by SWI4, a positive regulator of Gl-specific transcription. Cell 66:1015–1026.
  • Peter, Μ., A. Gartner, J. Horecka, G. Ammerer, and I. Her-skowitz. 1993. FARI links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747–760.
  • PringIe, J. R., and L. H. Hartwell. 1981. The Saccharomyces cerevisiae cell cycle, p. 97–142. In J. N. Strathem, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: life style and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Reed, S. L, J. A. Hadwiger, and A. T. Lorincz. 1985. Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proc. Natl. Acad. Sci. USA 82:4055–4059.
  • Richardson, H. E., C. Wittenberg, F. Cross, and S. I. Reed. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Stevenson, B. J., N. Rhodes, and G. F. Sprague, Jr. 1992. Constitutive mutants of the yeast pheromone response pathway reveal a protein kinase casade. Genes Dev. 6:1293–1304.
  • Surana, U., H. Robitsch, C. Price, T. Schuster, I. Fitch, A. B. Futcher, and K. Nasmyth. 1991. The role of CDC28 and cyclins during mitosis in the budding yeast 5. cerevisiae. Cell 65:145–161.
  • Tyers, Μ. Unpublished data.
  • Tyers, M., I. Fitch, G. Tokiwa, C. Dahmann, R. Nash, Μ. Linskens, and B. Futcher. 1991. Characterization of Gl and mitotic cyclins of budding yeast. Cold Spring Harbor Symp. Quant. Biol. 56:21–32.
  • Tyers, Μ., G. Tokiwa, and B. Futcher. 1993. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Clnl, Cln2, and other cyclins. EMBO J. 12:1955–1968.
  • Tyers, Μ., G. Tokiwa, R. Nash, and B. Futcher. 1992. The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1772–1784.
  • Valdivieso, Μ. H., K. Sugimoto, K∙-Y. Jahng, P. Μ. B. Fernandes, and C. Wittenberg. 1993. FAR1 is required for posttranscriptional regulation of CLN2 gene expression in response to mating pheromone. Mol. Cell. Biol. 13:1013–1022.
  • Wittenberg, C., K. Sugimoto, and S. I. Reed. 1990. Gl specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34cdc28 protein kinase. Cell 62:225–237.
  • Zhou, Z., A. Gartner, R. Cade, G. Ammerer, and B. Errede. 1993. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol. Cell. Biol. 13:2069–2080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.