8
Views
1
CrossRef citations to date
0
Altmetric
Gene Expression

Functionally Distinct Elements Are Required for Expression of the AMPD1 Gene in Myocytes

&
Pages 5854-5860 | Received 25 Nov 1992, Accepted 23 Jun 1993, Published online: 31 Mar 2023

REFERENCES

  • Bausch-Jurken, Μ. T., D. K. Mahnke-Zizelman, T. Morisaki, and R. L. Sabina. 1992. Molecular cloning of AMP deaminase isoform. L. J. Biol. Chem. 267:22407–22413.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640.
  • Cobianchi, F., and S. H. Wilson. 1987. Enzymes for modifying and labeling DNA and RNA. Methods Enzymol. 152:94–110.
  • Cseijesi, P., and E. N. Olson. 1991. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol. Cell. Biol. 11:4854–4862.
  • Dignam, J. D., R. Μ. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Felgner, P. L., T. R. Gadek, Μ. Holm, R. Roman, H. W. Chan, Μ. Wenz, J. P. Northrop, G. Μ. Ringold, and Μ. Danielson. 1987. Lipofectin: a highly efficient, lipid-mediated DNA-trans- fection procedure. Proc. Natl. Acad. Sci. USA 84:7413–7417.
  • Gossett, L. A., D. J. Kelvin, E. A. Sternberg, and E. N. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033.
  • Gunning, P., J. Leavitt, G. Muscat, S.-Y∙ Ng, and L. Kedes. 1987. A human β-actin expression vector system directs high- level accumulation of antisense transcripts. Proc. Natl. Acad. Sci. USA 84:4831–4835.
  • Gustafson, T. A., and L. Kedes. 1989. Identification of multiple proteins that interact with functional regions of the human cardiac α-actin promoter. Mol. Cell. Biol. 9:3269–3283.
  • Hall, C. V., P. E. Jacob, G. Μ. Ringold, and F. Lee. 1983. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2:101–109.
  • Hobson, G. Μ., Μ. T. Mitchell, G. R. Molly, Μ. L. Pearson, and P. A. Benfield. 1988. Identification of a novel TA-rich DNA binding protein that recognizes a TATA sequence within the brain creatine kinase promoter. Nucleic Acids Res. 16:8925–8944.
  • Horlick, R. A., and P. A. Benfield. 1989. The upstream musclespecific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol. Cell. Biol. 9:2396–2413.
  • Krieg, P. A., and D. A. Melton. 1987. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 155:397–415.
  • Li, Z., and D. Paulin. 1991. High level desmin expression depends on a muscle-specific enhancer. J. Biol. Chem. 266:6562–6570.
  • Mahdavi, V., A. P. Chambers, and B. Nadal-Ginard. 1984. Cardiac α- and β-myosin heavy chain genes are organized in tandem. Proc. Natl. Acad. Sci. USA 81:2626–2630.
  • Mahnke-Zizelman, D. K., and R. L. Sabina. 1992. Evidence for a third AMPD gene exhibiting alternatively spliced 5’-exons. J. Biol. Chem. 267:20866–20877.
  • Mar, J. H., and C. P. Ordahl. 1988. A conserved CATTCTT motif is required for skeletal muscle specific expression of the cardiac troponin T gene promoter. Proc. Natl. Acad. Sci. USA 85:6404–6408.
  • Marquetant, R∙, N. Μ. Desai, R. L. Sabina, and E. W. Holmes. 1987. Evidence for sequential expression of multiple AMP deaminase isoforms during muscle development. Proc. Natl. Acad. Sci. USA 84:2345–2349.
  • Meyer, S. L., K. L. Kvalnes-Krick, and V. L. Schramm. 1989. Characterization of AMD, the AMP deaminase gene in yeast. Production of amd strain, cloning, nucleotide sequence, and properties of the protein. Biochemistry 28:8734–8743.
  • Mineo, L., P. R. H Clarke, R. L. Sabina, and E. W. Holmes. 1990. A novel pathway for alternative splicing: identification of an RNA intermediate that generates an alternative 5’ splice donor site not present in the primary transcript of AMPD1. Mol. Cell. Biol. 10:5271–5278.
  • Montarras, D., C. Pinset, J. Chelly, A. Kahn, and F. Gros. 1989. Expression of MyoDl coincides with terminal differentiation but inducible muscle cells. EMBO J. 8:2203–2207.
  • Morisaki, T., Μ. Gross, H. Morisaki, D. Pongrats, N. Zöllner, and E. W. Holmes. 1992. Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc. Natl. Acad. Sci. USA 89:6457–6461.
  • Morisaki, T., R. L. Sabina, and E. W. Holmes. 1990. AMP deaminase: a multigene family in man and rat. J. Biol. Chem. 265:11482–11486.
  • Nudel, U., J. Μ. Calvo, Μ. Shani, and Z. Levy. 1984. The nucleotide sequence of a rat myosin light chain 2 gene. Nucleic Acids Res. 12:7175–7186.
  • Ogasawara, N., H. Goto, Y. Yamada, and T. Watanabe. 1978. Distribution of AMP-deaminase isozymes in rat tissues. Eur. J. Biochem. 87:297–304.
  • Pollock, R∙, and R. Treisman. 1991. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5:2327–2341.
  • Pugh, B. F., and R. Tjian. 1990. Mechanism of transcriptional activation by Spl: evidence for coactivators. Cell 61:1187–1197.
  • Sabina, R. L., T. Morisaki, P. Clarke, R. Eddy, T. B. Show, C. C. Morton, and E. W. Holmes. 1990. Characterization of the human and rat myoadenylate deaminase genes. J. Biol. Chem. 265:9423–9433.
  • Sabina, R. L., N. Ogasawara, and E. W. Holmes. 1989. Expression of three stage-specific transcripts of AMP deaminase during myogenesis. Mol. Cell. Biol. 9:2244–2246.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Selden, R. F., K. B. Howie, Μ. E. Rowe, H. Μ. Goodman, and D. D. Moore. 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6:3173–3179.
  • Southern, P. J., and P. Berg. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appi. Genet. 1:327–341.
  • Takahashi, K∙, Μ. Vigneron, H. Matthes, A. Wildeman, Μ. Zenke, and P. Chambon. 1986. Requirement of stereospecific alignments for initiation from the simian virus 40 early promoter. Nature (London) 319:121–126.
  • Walsh, K. 1989. Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes. Mol. Cell. Biol. 9:2191–2201.
  • Yu, Y.-T., R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and B. Nadal-Ginard. 1992. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6:1783–1798.
  • Zakut, R., Μ. Shani, D. Givol, S. Neuman, D. Yaffe, and U. Nudel. 1982. Nucleotide sequence of the rat skeletal muscle actin gene. Nature (London) 298:857–859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.