5
Views
33
CrossRef citations to date
0
Altmetric
Gene Expression

The 64-Kilodalton Subunit of the CstF Polyadenylation Factor Binds to Pre-mRNAs Downstream of the Cleavage Site and Influences Cleavage Site Location

, &
Pages 6647-6654 | Received 06 Jun 1994, Accepted 18 Jul 1994, Published online: 30 Mar 2023

REFERENCES

  • Ahmed, Y. F., G. M. Gilmartin, S. M. Hanly, J. R. Nevins, and W. C. Greene. 1991. The HTLV-I Rex response element mediates a novel form of mRNA polyadenylation. Cell 64:727–737.
  • Chou, Z.-F., S. B. Amrute, and J. Wilusz. Unpublished data.
  • Chou, Z.-F., F. Chen, and J. Wilusz. 1994. Sequence and position requirements for uridylate-rich downstream elements of polyadenylation signals. Nucleic Acids Res. 22:2525–2531.
  • Conway, L., and M. Wickens. 1985. A sequence downstream of AAUAAA is required for formation of simian virus 40 late mRNA 3′ termini in frog oocytes. Proc. Natl. Acad. Sci. USA 82:3949–3953.
  • Fitzgerald, M., and T. Shenk. 1981. The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260.
  • Gil, A., and N. J. Proudfoot. 1987. Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit β-globin mRNA 3′-end formation. Cell 49:399–406.
  • Gilmartin, G. M., and J. R. Nevins. 1989. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 3:2180–2189.
  • Gilmartin, G. M., and J. R. Nevins. 1991. Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol. Cell. Biol. 11:2432–2438.
  • Keller, W., S. Bienroth, K. M. Lang, and G. Christofori. 1991. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal. EMBO J. 10:4241–4249.
  • MacDonald, C. C., and D. L. Williams. 1993. RNase H/oligode-oxyribonucleotide-directed mRNA purification (ROMP) of apoII mRNA. Nucleic Acids Res. 21:765–766.
  • Manley, J. L. 1988. Polyadenylation of mRNA precursors. Biochim. Biophys. Acta 950:1–12.
  • Mason, P. J., J. A. Elkington, M. M. Lloyd, M. B. Jones, and J. G. Williams. 1986. Mutations downstream of the polyadenylation site of a Xenopus β-globin mRNA affect the position but not the efficiency of 3′ processing. Cell 46:263–270.
  • McDevitt, M. A., R. P. Hart, W. W. Wong, and J. R. Nevins. 1986. Sequences capable of restoring poly(A) site function define two distinct downstream elements. EMBO J. 5:2907–2913.
  • McDevitt, M. A., M. J. Imperiale, H. Ali, and J. R. Nevins. 1984. Requirements of a downstream sequence for generation of a poly(A) addition site. Cell 37:993–999.
  • McLauchlan, J., D. Gaffney, J. L. Whitton, and J. B. Clements. 1985. The consensus sequence YGTGTTYY located downstream from the AAUAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Res. 13:1347–1368.
  • Moore, C. L., J. Chen, and J. Whorisky. 1988. Two proteins crosslinked to RNA containing the adenovirus L3 poly A site require the AAUAAA sequence for binding. EMBO J. 7:3159–3169.
  • Murthy, K. G. K., and J. L. Manley. 1992. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J. Biol. Chem. 267:14804–14811.
  • Niwa, M., C. C. MacDonald, and S. M. Berget. 1992. Are exons scanned during splice-site selection? Nature (London) 360:277–280.
  • Proudfoot, N. J., and G. G. Brownlee. 1976. 3′ non-coding region sequences in eukaryotic messenger RNA. Nature (London) 263:211–214.
  • Ryner, L. C., and J. L. Manley. 1987. Requirements for accurate and efficient mRNA 3′ cleavage and polyadenylation of a simian virus 40 early pre-mRNA in vitro. Mol. Cell. Biol. 7:495–503.
  • Ryner, L. C., Y. Takagaki, and J. L. Manley. 1989. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly. Mol. Cell. Biol. 9:1759–1771.
  • Sachs, A., and E. Wahle. 1993. Poly(A) tail metabolism and function in eukaryotes. J. Biol. Chem. 268:22955–22958.
  • Sadofsky, M., and J. C. Alwine. 1984. Sequences on the 3′ side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site. Mol. Cell. Biol. 4:1460–1468.
  • Sadofsky, M., S. Connelly, J. L. Manley, and J. C. Alwine. 1985. Identification of a sequence element on the 3′ sides of AAUAAA which is necessary for simian virus 40 late mRNA 3′ end processing. Mol. Cell. Biol. 5:2713–2719.
  • Takagaki, Y., C. C. MacDonald, T. Shenk, and J. L. Manley. 1992. The human 64-kDa polyadenylation factor contains a ribonucleo-protein-type RNA binding domain and unusual auxiliary motifs. Proc. Natl. Acad. Sci. USA 89:1403–1407.
  • Takagaki, Y., and J. L. Manley. 1994. Personal communication.
  • Takagaki, Y., J. L. Manley, C. C. MacDonald, J. Wilusz, and T. Shenk. 1990. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4:2112–2120.
  • Takagaki, Y., L. C. Ryner, and J. L. Manley. 1989. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev. 3:1711–1724.
  • Wahle, E., and W. Keller. 1992. The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu. Rev. Biochem. 61:419–440.
  • Weiss, E. A., G. M. Gilmartin, and J. R. Nevins. 1991. Poly(A) site efficiency reflects the stability of complex formation involving the downstream element. EMBO J. 10:215–219.
  • Wilusz, J., and T. Shenk. 1988. A 64 kDa nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 52:221–228.
  • Wilusz, J., and T. Shenk. 1990. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA crosslinking and functionally substitutes for the downstream element of the polyadenylation signal. Mol. Cell. Biol. 10:6397–6407.
  • Wilusz, J., T. Shenk, Y. Takagaki, and J. L. Manley. 1990. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates. Mol. Cell. Biol. 10:1244–1248.
  • Zarkower, D., and M. Wickens. 1988. A functionally redundant downstream sequence in SV40 late pre-mRNA is required for mRNA 3′-end formation and for assembly of a precleavage complex in vitro. J. Biol. Chem. 263:5780–5788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.