7
Views
32
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Role of SH-PTP2, a Protein-Tyrosine Phosphatase with Src Homology 2 Domains, in Insulin-Stimulated Ras Activation

, , , &
Pages 6674-6682 | Received 19 May 1994, Accepted 19 Jul 1994, Published online: 30 Mar 2023

REFERENCES

  • Adachi, M., M. Sekiya, T. Miyachi, K. Matsuno, Y. Hinoda, K. Imai, and A. Yachi. 1993. Molecular cloning of a novel protein-tyrosine phosphatase SH-PTP3 with sequence similarity to the src-homology region 2. FEBS Lett. 314:335–339.
  • Ahmad, S., D. Banville, Z. Zhao, E. H. Fischer, and S.-H. Shen. 1993. A widely expressed human protein-tyrosine phosphatase containing src homology 2 domains. Proc. Natl. Acad. Sci. USA 90:2197–2201.
  • Ahn, N. G., R. Segar, and E. G. Krebs. 1992. The mitogen-activated protein kinase activator. Curr. Opin. Cell Biol. 4:992–999.
  • Baker, J. M., M. J. Myers, Jr., S. E. Shoelson, O. J. Chin, X.-J. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, J. Schlessinger, and M. F. White. 1992. Insulin receptor substrate IRS-1 associates with and activates PtdIns-3-kinase. EMBO J. 11:3469–3479.
  • Barford, D., A. J. Flint, and N. K. Tonks. 1994. Crystal structure of human protein tyrosine phosphatase 1B. Science 263:1397–1404.
  • Boguski, M. S., and F. McCormick. 1993. Proteins regulating Ras and its relatives. Nature (London) 366:643–654.
  • Chou, C. K., T. J. Dull, D. S. Russell, R. Gherzi, D. Lebwohl, A. Ullrich, and Ο. M. Rosen. 1987. Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J. Biol. Chem. 262:1842–1847.
  • Dechert, U., M. Adam, K. W. Harder, I. Clark-Lewis, and F. Jirik. 1994. Characterization of protein tyrosine phosphatase SH-PTP2: study of phosphopeptide substrates and possible regulatory role of SH2 domains. J. Biol. Chem. 269:5602–5611.
  • Ebina, Y., E. Araki, M. Taira, F. Shimada, M. Mori, C. S. Craik, K. Siddle, S. B. Pierce, and R. A. Roth. 1987. Replacement of lysine residue 1030 in the putative ATP-binding region of the insulin receptor abolishes insulin- and antibody-stimulated glucose uptake and receptor kinase activity. Proc. Natl. Acad. Sci. USA 84:704–708.
  • Feng, G.-S., C.-C. Hui, and T. Pawson. 1993. SH2-containing phosphotyrosine phosphatase as a target of protein tyrosine kinase. Science 259:1607–1611.
  • Fisher, E. Η., H. Charbonneau, and N. K. Tonks. 1991. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253:401–406.
  • Freeman, R. M., Jr., J. Plutzky, and B. G. Neel. 1992. Identification of a human src homology 2-containing protein-tyrosine-phosphatase: putative homolog of Drosophila corkscrew. Proc. Natl. Acad. Sci. USA 89:11239–11243.
  • Hara, K., K. Yonezawa, H. Sakaue, A. Ando, K. Kotani, Y. Kitamura, H. Ueda, L. Stephens, T. R. Jackson, P. T. Hawkins, R. Dhand, A. E. Clark, G. D. Holman, M. D. Waterfield, and M. Kasuga. Phosphoinositide 3-kinase activity is required for insulin-stimulated glucose transport but not for Ras activation in CHO cells. Proc. Natl. Acad. Sci. USA, in press.
  • Izumi, T., Y. Saeki, F. Takaku, and M. Kasuga. 1988. Requirement for receptor-intrinsic tyrosine kinase activities during ligand-induced membrane ruffling of KB cells. J. Biol. Chem. 263:10386–10393.
  • Kasuga, M., Y. Fujita-Yamaguchi, D. Blithe, and C. R. Kahn. 1983. Tyrosine-specific protein kinase activity is associated with the purified insulin receptor. Proc. Natl. Acad. Sci. USA 80:2137–2141.
  • Kasuga, M., T. Izumi, K. Tobe, T. Shiba, K. Momomura, Y. Tashiro-Hashimoto, and T. Kadowaki. 1990. Substrates for insulin receptor kinase. Diabetes Care 13:317–326.
  • Kazlauskas, A., G.-S. Feng, T. Pawson, and M. Valius. 1993. The 64-kDa protein that associates with the platelet-derived growth factor receptor β subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc. Natl. Acad. Sci. USA 90:6939–6942.
  • Kotani, K., K. Yonezawa, K. Hara, H. Ueda, Y. Ido, H. Sakaue, A. Ando, A. Chavanieu, B. Calas, F. Grigorescu, M. Nishiyama, M. D. Waterfield, and M. Kasuga. 1994. Involvement of phosphoinositide 3-kinase in insulin or IGF-1-induced membrane ruffling. EMBO J. 13:2313–2321.
  • Kuhné, M. R., T. Pawson, G. E. Lienhard, and G.-S. Feng. 1993. The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J. Biol. Chem. 268:11479–11481.
  • Lechleider, R. L., R. M. Freeman, Jr., and B. G. Neel. 1993. Tyrosyl phosphorylation and growth factor receptor association of the human corkscrew homologue, SH-PTP2. J. Biol. Chem. 268:13434–13438.
  • Lee, C.-H., R. Nishimura, M. Zhou, A. G. Batzer, M. G. Meyers, Jr., M. F. White, J. Schlessinger, and E. Y. Skolnik. 1993. Nck associates with the SH2 domain-docking protein IRS-1 in insulin-stimulated cells. Proc. Natl. Acad. Sci. USA 90:11713–11717.
  • Li, W., R. Nishimura, A. Kashishian, A. G. Batzer, W. J. H. Kim, J. A. Cooper, and J. Schlessinger. 1993. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol. Cell. Biol. 14:509–517.
  • Lu, X., T. B. Chou, N. G. Williams, T. Roberts, and N. Perrimon. 1993. Control of cell fate determination by p21ras/Rasl, an essential component of torso signaling in Drosophila. Genes Dev. 7:621–632.
  • Matozaki, T., C. Sakamoto, T. Suzuki, K. Matsuda, T. Uchida, O. Nakano, K. Wada, H. Nishisaki, Y. Konda, M. Nagao, and M. Kasuga. 1992. p53 gene mutations in human gastric cancer: wild-type p53 but not mutant p53 suppresses growth of human gastric cancer cells. Cancer Res. 52:1–7.
  • Matozaki, T., T. Suzuki, T. Uchida, J. Inazawa, T. Ariyama, K. Matsuda, K. Horita, H. Noguchi, H. Mizuno, C. Sakamoto, and M. Kasuga. 1994. Molecular cloning of a human transmembrane-type protein tyrosine phosphatase and its expression in gastrointestinal cancers. J. Biol. Chem. 269:2075–2081.
  • Medema, R. Η., B. M. T. Burgering, and J. L. Bos. 1991. Insulin-induced p21ras activation does not require protein kinase C, but a protein sensitive to phenylarsine oxide. J. Biol. Chem. 266:21186–21189.
  • Morgan, D. O., and R. A. Roth. 1987. Acute insulin action requires insulin receptor kinase activity; introduction of an inhibitory monoclonal antibody into mammalian cells blocks the rapid effects of insulin. Proc. Natl. Acad. Sci. USA 84:41–45.
  • Noguchi, T., T. Matozaki, Y. Fujioka, and M. Kasuga. Unpublished observations.
  • Pawson, T., and J. Schlessinger. 1993. SH2 and SH3 domains. Curr. Biol. 3:434–442.
  • Pelicci, G., L. Lanfrancone, F. Grignani, J. McGlade, F. Cavallo, G. Forni, I. Nicoletti, F. Grignani, T. Pawson, and P. G. Pelicci. 1992. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104.
  • Perkins, L. A., I. Lavsen, and N. Perrimon. 1992. Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70:225–236.
  • Perrimon, N. 1993. The torso receptor protein-tyrosine kinase signaling pathway: an endless story. Cell 74:219–222.
  • Porras, A., A. R. Nebreda, M. Benito, and E. Santos. 1992. Activation of Ras in 3T3 L1 cells does not involve GTPase-activating protein phosphorylation. J. Biol. Chem. 267:21124–21131.
  • Pronk, G. J., A. M. M. de Vries-Smits, L. Buday, J. Downward, J. A. Maassen, R. H. Medema, and J. L. Bos. 1994. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Mol. Cell. Biol. 14:1575–1581.
  • Pronk, G. J., J. McGlade, G. Pelicci, T. Pawson, and J. L. Bos. 1993. Insulin-induced phosphorylation of the 46 and 52-kDa Shc proteins. J. Biol. Chem. 268:5748–5753.
  • Rosen, D. W., A. R. Saltiel, M. Majumdar, S. J. Decker, and J. M. Olefsky. 1994. Insulin receptor substrate 1 is required for insulin-mediated mitogenic signal transduction. Proc. Natl. Acad. Sci. USA 91:797–801.
  • Rosen, Ο. M. 1987. After insulin binds. Science 237:1452–1457.
  • Roth, R. A., and D. T. Cassell. 1983. Insulin receptor: evidence that it is a protein kinase. Science 219:299–301.
  • Skolnik, E. Y., A. Batzer, N. Li, C.-H. Lee, E. Lowenstein, M. Mohammadi, B. Morgolis, and J. Schlessinger. 1993. The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science 260:1953–1955.
  • Skolnik, E. Y., C.-H. Lee, A. Batzer, L. M. Vicentini, M. Zhou, R. Daly, M. J. Myers, Jr., J. M. Baker, A. Ullrich, M. F. White, and J. Schlessinger. 1993. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signaling. EMBO J. 12:1929–1936.
  • Streuli, M., N. X. Krueger, T. Thai, M. Tang, and H. Saito. 1990. Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J. 9:2399–2407.
  • Sugimoto, S., R. J. Lechleider, S. E. Shoelson, B. G. Neel, and C. T. Walsh. 1993. Expression, purification, and characterization of SH2-containing protein tyrosine phosphatase, SH-PTP2. J. Biol. Chem. 268:22771–22776.
  • Sun, X. J., D. L. Crimmins, M. G. Myers, Jr., M. Miralpeix, and M. F. White. 1993. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol. Cell. Biol. 13:7418–7428.
  • Sun, X. J., P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein, and M. F. White. 1991. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature (London) 352:73–77.
  • Tobe, K., K. Matsuoka, H. Tamemoto, K. Ueki, Y. Kaburagi, S. Asai, T. Noguchi, M. Matsuda, S. Tanaka, S. Hatton, Y. Fukui, Y. Akanuma, Y. Yazaki, T. Takenawa, and T. Kadowaki. 1993. Insulin stimulates association of insulin receptor substrate-1 with the protein abundant src homology/growth factor receptor-bound protein 2. J. Biol. Chem. 268:11167–11171.
  • Trowbridge, I. S. 1991. CD45, a prototype for transmembrane protein tyrosine phosphatase. J. Biol. Chem. 266:23517–23520.
  • Uchida, T., T. Matozaki, K. Matsuda, T. Suzuki, S. Matozaki, O. Nakano, K. Wada, Y. Konda, C. Sakamoto, and M. Kasuga. 1993. Phorbol ester stimulates the activity of a protein tyrosine phosphatase containing SH2 domains (PTP1C) in HL-60 leukemia cells by increasing gene expression. J. Biol. Chem. 268:11845–11850.
  • Uchida, T., T. Matozaki, T. Noguchi, T. Yamao, K. Horita, T. Suzuki, Y. Fujioka, C. Sakamoto, and M. Kasuga. 1994. Insulin stimulates the phosphorylation of Tyr538 and the catalytic activity of PTP1C, a protein tyrosine phosphatase with Src homology-2 domains. J. Biol. Chem. 269:12220–12228.
  • Valius, M., and A. Kazlauakas. 1993. Phospholipase C-γ1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell 73:321–334.
  • Vogel, W., R. Lammers, J. Huang, and A. Ullrich. 1993. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259:1611–1614.
  • Yonezawa, K., A. Ando, Y. Kaburagi, R. Yamamoto-Honda, T. Kitamura, K. Hara, M. Nakafuku, Y. Okabayashi, T. Kadowaki, Y. Kajiro, and M. Kasuga. 1994. Signal transduction pathways from insulin receptors to Ras. J. Biol. Chem. 269:4634–4640.
  • Yonezawa, K., H. Ueda, K. Hara, K. Nishida, A. Ando, A. Chavanieu, H. Matsuba, K. Shii, K. Yokono, Y. Fukui, B. Calas, F. Grigorescu, R. Dhand, I. Gout, M. Ohtsu, M. D. Waterfield, and M. Kasuga. 1992. Insulin-dependent formation of a complex containing an 85-kDa subunit of phosphatidylinositol 3-kinase and tyrosine-phosphorylated insulin receptor substrate 1. J. Biol. Chem. 267:25958–25966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.