1
Views
8
CrossRef citations to date
0
Altmetric
Gene Expression

Fast-Muscle-Specific Expression of Human Aldolase A Transgenes

, , , , , & show all
Pages 6797-6808 | Received 14 Feb 1994, Accepted 25 Jul 1994, Published online: 30 Mar 2023

REFERENCES

  • Aronow, B. J., R. N. Silbiger, M. R. Dusing, J. L. Stock, K. L. Yager, S. S. Potter, J. J. Hutton, and D. A. Wiginton. 1992. Functional analysis of the human adenosine deaminase gene thymic regulatory region and its ability to generate position-independent transgene expression. Mol. Cell. Biol. 12:4170–4185.
  • Sandman, E. 1992. Contractile protein isoforms in muscle development. Dev. Biol. 154:273–283.
  • Bober, E., G. E. Lyons, T. Braun, G. Cossu, M. Buckingham, and H. Arnold. 1991. The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J. Cell Biol. 113:1255–1265.
  • Boquet, D., S. Vaulont, G. Tremp, M. Ripoche, D. Daegelen, J. Jami, A. Kahn, and M. Raymondjean. 1992. DNase I hypersensitivity analysis of the L-type pyruvate kinase gene in rats and transgenic mice. Eur. J. Biochem. 207:13–21.
  • Chamberlain, J. W., H. A. Vasavada, S. Ganguly, and S. Weissman. 1991. Identification of cis sequences controlling efficient position-independent tissue-specific expression of human major histocompatibility complex class I genes in transgenic mice. Mol. Cell. Biol. 11:3564–3572.
  • Cheng, T., M. C. Wallace, J. P. Merlie, and E. N. Olson. 1993. Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 261:215–218.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Colbert, M. C., and E. Ciejek-Baez. 1992. The proximal promoter of the aldolase A gene remains active during myogenesis in vitro and muscle development in vivo. Dev. Biol. 149:66–79.
  • Concordet, J.-P., P. Maire, A. Kahn, and D. Daegelen. 1991. A ubiquitous enhancer shared by two promoters in the human aldolase A gene. Nucleic Acids Res. 19:4173–4180.
  • Concordet, J.-P., M. Salminen, J. Demignon, C. Moch, P. Maire, A. Kahn, and D. Daegelen. 1993. An opportunistic promoter sharing regulatory sequences with either a muscle-specific or a ubiquitous promoter in the human aldolase A gene. Mol. Cell. Biol. 13:9–17.
  • Crossley, M., and S. H. Orkin. 1993. Regulation of the β-globin locus. Curr. Opin. Genet. Dev. 3:232–237.
  • Donoghue, M. J., J. D. Alvarez, J. P. Merlie, and J. R. Sanes. 1991. Fiber-type and position-dependent expression of a myosin light chain-CAT transgene detected with a novel histochemical stain for CAT. J. Cell Biol. 115:423–434.
  • Edmondson, D. G., T.-C. Cheng, P. Cserjesi, T. Chakraborty, and E. N. Olson. 1992. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol. Cell. Biol. 12:3665–3677.
  • Edmondson, D. G., and E. N. Olson. 1993. Helix-loop-helix proteins as regulators of muscle-specific transcription. J. Biol. Chem. 268:755–758.
  • Elgin, S. R. C. 1988. The formation and function of DNase I hypersensitive sites in the process of gene activation. J. Biol. Chem. 263:19259–19262.
  • Epner, E., C. G. Kim, and M. Groudine. 1992. What does the locus control region control? Curr. Biol. 2:262–264.
  • Frazer, P., J. Hurst, P. Collis, and F. Grosveld. 1990. DNase I hypersensitive sites 1, 2, and 3 of the human β-globin dominant control region direct position-independent expression. Nucleic Acids Res. 18:3503–3508.
  • Gautron, S., P. Maire, V. Hakim, and A. Kahn. 1991. Regulation of the multiple promoters of the human aldolase A gene: response of its two ubiquitous promoters to agents promoting cell differentiation. Nucleic Acids Res. 19:767–774.
  • Gossett, L. A., D. J. Kelvin, E. A. Sternberg, and E. N. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033.
  • Greaves, D. R., F. D. Wilson, G. Lang, and D. Kioussis. 1989. Human CD2 3′-flanking sequences confer high-level, T cell specific, position-independent gene expression in transgenic mice. Cell 56:979–986.
  • Gross, D. S., and W. T. Garrard. 1988. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57:159–197.
  • Grosveld, F., G. Blom van Assendelft, D. R. Greaves, and G. Kollias. 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51:975–985.
  • Hallauer, P. L., H. L. Bradshaw, and K. E. M. Hastings. 1993. Complex fiber-type-specific expression of fast skeletal muscle troponin I gene constructs in transgenic mice. Development 119:691–701.
  • Hämäläinen, N., and D. Pette. 1993. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J. Histochem. Cytochem. 41:733–743.
  • Hidaka, K., I. Yamamoto, Y. Arai, and T. Mukai. 1993. The MEF-3 motif is required for MEF-2-mediated skeletal muscle-specific induction of the rat aldolase A gene. Mol. Cell. Biol. 13:6469–6478.
  • Higgs, D. R., W. G. Wood, A. P. Jarman, J. Lida, I. M. Pretorius, and H. Ayyub. 1990. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev. 4:1588–1601.
  • Hughes, S. M., J. M. Taylor, S. J. Tapscott, C. M. Gurley, W. J. Carter, and C. A. Peterson. 1993. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118:1137–1147.
  • Izzo, P., P. Constanzo, A. Lupo, A. Rippa, G. Paolella, and F. Salvatore. 1988. Human aldolase A gene. Structural organization and tissue-specific expression by multiple promoters and alternate mRNA processing. Eur. J. Biochem. 174:569–578.
  • Jaenisch, R. 1988. Transgenic animals. Science 240:1468–1474.
  • Konieczny, S. F., and C. P. Emerson. 1987. Complex regulation of the muscle-specific contractile protein (troponin I) gene. Mol. Cell. Biol. 7:3065–3075.
  • Lichtsteiner, S., J. Wuarin, and U. Schibler. 1987. The interplay of DNA-binding proteins on the promoter of the mouse albumin gene. Cell 51:963–973.
  • Lowrey, C. H., D. M. Bodine, and A. W. Nienhuis. 1992. Mechanism of DNase I hypersensitive site formation within the human globin locus control region. Proc. Natl. Acad. Sci. USA 89:1143–1147.
  • Luckow, B., and G. Schütz. 1987. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 15:5490.
  • Maire, P., S. Gautron, V. Hakim, C. Gregori, F. Mennecier, and A. Kahn. 1987. Characterization of three optional promoters in the 5′ region of human aldolase A gene. J. Mol. Biol. 197:425–438.
  • Mar, J. H., and C. P. Ordahl. 1990. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol. Cell. Biol. 10:4271–4283.
  • Miller, J. B. 1992. Myoblast diversity in skeletal myogenesis: how much and to what end? Cell 69:1–3.
  • Miller, J. B., E. A. Everitt, T. H. Smith, N. E. Block, and J. A. Dominov. 1993. Cellular and molecular diversity in skeletal muscle development: news from in vitro and in vivo. Bioessays 15:191–196.
  • Minty, A., and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif. Mol. Cell. Biol. 6:2125–2136.
  • Moch, C. Unpublished data.
  • Neznanov, N., I. S. Thorey, G. Cecena, and R. G. Oshima. 1993. Transcriptional insulation of the human keratin 18 gene in transgenic mice. Mol. Cell. Biol. 13:2214–2223.
  • Olson, E. N. 1990. MyoD family: a paradigm for development?
  • Orkin, S. H. 1990. Globin gene regulation and switching: circa 1990. Cell 63:665–672.
  • Ott, M.-O., E. Bober, G. Lyons, H. Arnold, and M. Buckingham. 1991. Early expression of the myogenic regulatory gene, Myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111:1097–1107.
  • Palmiter, R. D., and R. L. Brinster. 1986. Germline transformation of mice. Annu. Rev. Genet. 20:465–499.
  • Palmiter, R. D., E. P. Sandgren, D. M. Koeller, and R. L. Brinster. 1993. Distal regulatory elements from the mouse metallothionein locus stimulate gene expression in transgenic mice. Mol. Cell. Biol. 13:5266–5275.
  • Pette, D., and S. Staron. 1990. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev. Physiol. Biochem. Pharmacol. 116:1–60.
  • Philipsen, S., D. Talbot, P. Fraser, and F. Grosveld. 1990. The β-globin dominant control region: hypersensitive site 2. EMBO J. 9:2159–2167.
  • Pollock, R., and R. Treisman. 1991. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5:2327–2341.
  • Rhodes, S. J., and S. F. Konieczny. 1989. Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev. 3:2050–2061.
  • Rudnicki, M. A., T. Braun, S. Hinuma, and R. Jaenisch. 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71:383–390.
  • Salminen, M. Unpublished data.
  • Sassoon, D., G. Lyons, W. E. Wright, V. Lin, A. Lassar, H. Weintraub, and M. Buckingham. 1989. Expression of two myogenic regulatory factors: myogenin and MyoD1 are expressed before somite formation in early embryogenesis. Nature (London) 341:303–307.
  • Schafer, D. A., J. B. Miller, and F. Stockdale. 1987. Cell diversification within the myogenic lineage: in vitro generation of two types of myoblasts from a single myogenic progenitor cell. Cell 48:659–670.
  • Shapiro, D. J., P. A. Sharp, W. W. Wahli, and M. J. Keller. 1988. A high-efficiency HeLa cell nuclear transcription extract. DNA 7:47–55.
  • Smith, T. Η., N. E. Block, S. J. Rhodes, S. F. Konieczny, and J. B. Miller. 1993. A unique pattern of expression of the four muscle regulatory factor proteins distinguishes somatic from embryonic, fetal and newborn mouse myogenic cells. Development 117:1125–1133.
  • Stauifer, J. K., and E. Ciejek-Baez. 1992. Autonomous activity of the alternate aldolase A muscle promoter is maintained by a sequestering mechanism. Nucleic Acids Res. 20:327–336.
  • Stauffer, J. K., M. Colbert, and E. Ciejek-Baez. 1990. Nonconservative utilisation of aldolase A alternative promoters. J. Biol. Chem. 265:11773–11782.
  • Stockdale, F. E. 1992. Myogenic cell lineages. Dev. Biol. 154:284–298.
  • Vacher, J., and S. M. Tilghman. 1990. Dominant negative regulation of the mouse α-fetoprotein gene in adult liver. Science 250:1732–1735.
  • Vyas, P., M. A. Vickers, D. L. Simmons, H. Ayyub, C. F. Craddock, and D. R. Higgs. 1992. Cis-acting sequences regulating expression of the human α-globin cluster lie within constitutively open chromatin. Cell 69:781–793.
  • Whalen, R. G., S. M. Sell, G. S. Butler-Browne, K. Schwartz, P. Bouveret, and I. Pinset-Harström. 1981. Three myosin heavy chain isozymes appear sequentially in rat development. Nature (London) 292:805–809.
  • Whitelaw, C. B. A., S. Harris, M. McClenaghan, J. P. Simons, and A. J. Clark. 1992. Position-independent expression of the ovine β-lactoglobulin gene in transgenic mice. Biochem. J. 286:31–39.
  • Yee, S., and P. W. J. Rigby. 1993. The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev. 7:1277–1289.
  • Yu, Y.-T., R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and B. Nadal-Ginard. 1992. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6:1783–1798.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.